[1] WANG D Q, ZHANG P. Non-steady-state gas leakage model for pressure vessel failure[J]. China Safety Science Journal, 2012, 22(7):154-158. [2] GAI F F, PANG B J, GUAN G S. Numerical investigation on the characteristics of debris clouds produced by hypervelocity impact on pressure vessels[J]. Chinese Journal of High Pressure Physics, 2009, 23(3):223-228. [3] BIAN X, ZHANG Y, LI Y B, et al. A new method of using sensor arrays for gas leakage location based on correlation of the time-space domain of continuous ultrasound[J]. Sensors, 2015, 15(4):8266-8283. [4] PÜTTMER A. New applications for ultrasonic sensors in process industries[J]. Ultrasonics, 2006, 44:e1379-1383. [5] WANG R, AN L, SHEN G, ZHANG S. Three-dimensional temperature field reconstruction with acoustics based on regularized SVD algorithm[J]. Chinese Journal of Computational Physics, 2015, 32(2):195-201. [6] HERZFELD K F, LITOVITZ T A. Absorption and dispersion of ultrasonic waves[M]. New York:Academic, 1959. [7] ZHANG K S, WANG S, ZHU M, et al. Analytical model for acoustic multi-relaxation spectrum in gas mixtures[J]. Acta Physica Sinica, 2012, 61(17):174301. [8] ZHANG K S, WANG S, ZHU M, et al. Decoupling multimode vibrational relaxations in multicomponent gas mixtures:Analysis of sound relaxational absorption spectra[J]. Chinese Physics B, 2013, 22(1):014305. [9] LIU Y, LIU S, LEI J, et al. An algorithm for multi-physics field reconstruction based on molecular relaxation model of mixtures[J]. Chinese Journal of Computational Physics, 2014, 31(1):67-74. [10] ZHANG Y, SONG H. Vibration-vibration relaxation of UF6 vibrationally excited molecules[J]. Chinese Journal of Computational Physics, 2014, 31(2):230-236. [11] COTTET A, NEUMEIER Y, SCARBOROUGH D, et al. Acoustic absorption measurements for characterization of gas mixing[J]. J Acoust Soc Am, 2004, 116:2081-2088. [12] CARLSON J E, CARLSON R. Prediction of molar fractions in two-component gas mixtures using pulse-echo ultrasound and PLS regression[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53:606-613. [13] PETCULESCU A G, LUEPTOW R M. Quantitative acoustic relaxational spectroscopy for real-time monitoring of natural gas:A perspective on its potential[J]. Sensors and Actuators B:Chemical, 2012, 169(1):121-127. [14] PETCULESCU A G, HALL B, FRAENZLE R, et al. A prototype acoustic gas sensor based on attenuation[J]. J Acoust Soc Am, 2006, 120(4):1779-1782. [15] PHILLIPS S, DAIN Y, LUEPTOW R M. Theory for a gas composition sensor based on acoustic properties[J]. Measurement Science and Technology, 2003, 14(1):70-75. [16] SHIELDS F D. On obtaining transition rates from sound absorption and dispersion curves[J]. J Acoust Soc Am, 1970, 47(5B):1262-1268. [17] ZHANG K S, ZHANG X Q, SHAO F, et al. Analysis of environmental influencing on acoustic relaxation frequency in multi-component excitable gases[J]. Chinese Journal of Computational Physics, 2019, 36(1):89-98. [18] ZHANG K S, WANG S, ZHU M, DING Y. Algorithm for capturing primary relaxation processes in excitable gases by two-frequency acoustic measurements[J]. Measurement Science and Technology, 2013, 24(5):055002. [19] HU Y, WANG S, ZHU M, et al. Acoustic absorption spectral peak location for gas detection[J]. Sens Actuators B:Chem, 2014, 203:1-8. [20] ZHANG K S, CHEN L K, OU W H, et al. A theory for monitoring combustion of natural gas based on the maximum point in sound absorption spectrum[J]. Acta Physica Sinica, 2015, 64(5):054302. [21] ZHANG K S, DING Y, ZHU M, et al. Calculating vibrational mode contributions to sound absorption in excitable gas mixtures by decomposing multi-relaxation absorption spectroscopy[J]. Applied Acoustics, 2017, 116(15):195-204. [22] PETCULESCU A G, LUEPTOW R M. Synthesizing primary molecular relaxation processes in excitable gases using a two-frequency reconstructive algorithm[J]. Physical Review Letters, 2005, 94(23):238301. [23] KNESER H O. Relaxation processes in gases in physical acoustics:Vol. II[M]. Mason W P, ed. New York:Academic, 1965:133-199. [24] ZHANG K S, ZHU M, TANG W Y, et al. Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements[J]. Acta Physica Sinica, 2016, 65(13):134302. [25] ZHANG K S, ZHANG X Q, TANG W Y, et al. Calculation of vibrational energy transition rates in acoustic relaxation process for excitable gas molecules[J]. Acta Acustica, 2018, 43(3):309-409. [26] BHATIA A B. Ultrasonic absorption[M]. New York:Dover, 1985. [27] EJAKOV S G, PHILLIPS S, DAIN Y, et al. Acoustic attenuation in gas mixtures with nitrogen:Experimental data and calculations[J]. J Acoust Soc Am, 2003, 113(4):1871-187. |