计算物理 ›› 2021, Vol. 38 ›› Issue (4): 489-497.DOI: 10.19596/j.cnki.1001-246x.8300
收稿日期:
2020-11-10
出版日期:
2021-07-25
发布日期:
2021-12-21
通讯作者:
崔国民
作者简介:
赵倩倩(1995-), 女, 河南周口人, 上海理工大学硕士研究生
基金资助:
Qianqian ZHAO, Guomin CUI(), Zhengheng HAN, Yuan XIAO, Yue XU
Received:
2020-11-10
Online:
2021-07-25
Published:
2021-12-21
Contact:
Guomin CUI
摘要:
强制进化随机游走算法优化换热网络时,以一定的概率接受差解可有效促进结构进化,非贪婪性的差解搜索机制是目标函数跳出局部极值的关键。本文分析接受差解机制的作用,探究不同优化阶段的差解结构来源,观察年综合费用变化,发现大多数被接受的差解结构在后续的优化中又回归到原结构,存在较多无效的参数传递过程。我们提出选择性接受差解策略,只接受具有新个体产生的差解,基于指数函数建立接受差解概率递增公式,并对结构中的新个体加以保护以增强其在结构中的存活率。最后选用9SP2、20SP算例进行验证,取得了优于已发表文献的最优结果,证明了该策略的可行性。
中图分类号:
赵倩倩, 崔国民, 韩正恒, 肖媛, 徐玥. RWCE算法中选择性接受差解策略优化换热网络[J]. 计算物理, 2021, 38(4): 489-497.
Qianqian ZHAO, Guomin CUI, Zhengheng HAN, Yuan XIAO, Yue XU. An RWCE Algorithm for Heat Exchanger Network Optimization with Selective Acceptance of Imperfect Networks Strategy[J]. Chinese Journal of Computational Physics, 2021, 38(4): 489-497.
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | 0.5 | |
CU | 15 | 30 | 0.5 | |
Annual cost of heat exchangers=2000 + 70A$·a-1; | ||||
Annual cost of hot utility=60 $·kW-1·a -1; | ||||
Annual cost of cold utility=6 $·kW-1·a -1 |
表1 9SP1流股参数表
Table 1 Parameters of streams in Case 9SP1
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 327 | 40 | 100 | 0.5 |
H2 | 220 | 160 | 160 | 0.4 |
H3 | 220 | 60 | 60 | 0.14 |
H4 | 160 | 45 | 400 | 0.3 |
C1 | 100 | 300 | 100 | 0.35 |
C2 | 35 | 164 | 70 | 0.7 |
C3 | 85 | 138 | 350 | 0.5 |
C4 | 60 | 170 | 60 | 0.14 |
C5 | 140 | 300 | 200 | 0.6 |
HU | 330 | 250 | 0.5 | |
CU | 15 | 30 | 0.5 | |
Annual cost of heat exchangers=2000 + 70A$·a-1; | ||||
Annual cost of hot utility=60 $·kW-1·a -1; | ||||
Annual cost of cold utility=6 $·kW-1·a -1 |
IT | S1 | ΔF1/($·a-1) | S2 | ΔF2/($·a-1) |
(1, 1×107] | 11 046 | 3 353 723 | 7 450 | 3 496 756 |
(1×107, 2×107] | 44 | 1 678 | 4 | 401 |
(2×107, 4×107] | 1 213 | 109 679 | 133 | 8 884 |
(4×107, 8×107] | 0 | 0 | 19 | 3 119 |
(8×107, 1×108] | 0 | 0 | 2 | 71 |
表2 不同情况下突破历史最优解统计
Table 2 Statistics on cases of breaking through historical optimal solutions under different circumstances
IT | S1 | ΔF1/($·a-1) | S2 | ΔF2/($·a-1) |
(1, 1×107] | 11 046 | 3 353 723 | 7 450 | 3 496 756 |
(1×107, 2×107] | 44 | 1 678 | 4 | 401 |
(2×107, 4×107] | 1 213 | 109 679 | 133 | 8 884 |
(4×107, 8×107] | 0 | 0 | 19 | 3 119 |
(8×107, 1×108] | 0 | 0 | 2 | 71 |
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 500 | 420 | 9 | 1 |
H2 | 480 | 390 | 10 | 1 |
H3 | 430 | 370 | 11 | 0.8 |
H4 | 420 | 340 | 9.5 | 0.7 |
H5 | 440 | 370 | 7.5 | 0.7 |
H6 | 390 | 330 | 6.5 | 0.8 |
C1 | 300 | 465 | 16 | 0.6 |
C2 | 330 | 450 | 12 | 1 |
C3 | 360 | 520 | 14 | 0.7 |
HU | 650 | 649 | 927 | 1 |
CU | 300 | 310 | 17 | 2.5 |
Annual cost of heat exchangers=1800A0.65 $·a-1; | ||||
Annual cost of hot utility=80 $·kW-1·a -1; | ||||
Annual cost of cold utility=20 $·kW-1·a -1 |
表3 9SP2流股参数
Table 3 Parameter of streams in Case 9SP2
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 500 | 420 | 9 | 1 |
H2 | 480 | 390 | 10 | 1 |
H3 | 430 | 370 | 11 | 0.8 |
H4 | 420 | 340 | 9.5 | 0.7 |
H5 | 440 | 370 | 7.5 | 0.7 |
H6 | 390 | 330 | 6.5 | 0.8 |
C1 | 300 | 465 | 16 | 0.6 |
C2 | 330 | 450 | 12 | 1 |
C3 | 360 | 520 | 14 | 0.7 |
HU | 650 | 649 | 927 | 1 |
CU | 300 | 310 | 17 | 2.5 |
Annual cost of heat exchangers=1800A0.65 $·a-1; | ||||
Annual cost of hot utility=80 $·kW-1·a -1; | ||||
Annual cost of cold utility=20 $·kW-1·a -1 |
Units | QHU/MW | QCU /MW | TAC/($·a-1) | |
Ref.[ | 10 | 3.274 | 0.908 | 419 323 |
This work (RWCE) | 9 | 2.365 | 0.000 | 350 813 |
This work (SAI-RWCE) | 9 | 2.365 | 0.000 | 349 253 |
表4 算例1与文献结果
Table 4 Results in Case 1 and in literature
Units | QHU/MW | QCU /MW | TAC/($·a-1) | |
Ref.[ | 10 | 3.274 | 0.908 | 419 323 |
This work (RWCE) | 9 | 2.365 | 0.000 | 350 813 |
This work (SAI-RWCE) | 9 | 2.365 | 0.000 | 349 253 |
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 576 | 437 | 23.1 | 0.06 |
H2 | 599 | 399 | 15.22 | 0.06 |
H3 | 530 | 382 | 15.15 | 0.06 |
H4 | 449 | 237 | 14.76 | 0.06 |
H5 | 368 | 177 | 10.7 | 0.06 |
H6 | 121 | 114 | 149.6 | 1 |
H7 | 202 | 185 | 258.2 | 1 |
H8 | 185 | 113 | 8.38 | 1 |
H9 | 140 | 120 | 59.89 | 1 |
H10 | 69 | 66 | 165.79 | 1 |
H11 | 120 | 68 | 8.74 | 1 |
H12 | 67 | 35 | 7.62 | 1 |
H13 | 1 034.5 | 576 | 21.3 | 0.06 |
C1 | 123 | 343 | 10.61 | 0.06 |
C2 | 20 | 156 | 6.65 | 1.2 |
C3 | 156 | 157 | 3 291 | 2 |
C4 | 20 | 182 | 26.63 | 1.2 |
C5 | 182 | 318 | 31.19 | 1.2 |
C6 | 318 | 320 | 4 011.83 | 2 |
C7 | 322 | 923.78 | 17.6 | 0.06 |
HU | 927 | 927 | 5 | |
CU | 9 | 17 | 1 | |
Annual cost of heat exchangers=4000+500A0.83 $·a-1; | ||||
Annual cost of hot utility=250 $·kW-1·a -1; | ||||
Annual cost of cold utility=25 $·kW-1·a -1 |
表5 20SP流股参数
Table 5 Parameters of streams in Case 20SP
Steam | Tin/℃ | Tout/℃ | McP/(kW·K-1) | h/(kW·m-2·K-1) |
H1 | 576 | 437 | 23.1 | 0.06 |
H2 | 599 | 399 | 15.22 | 0.06 |
H3 | 530 | 382 | 15.15 | 0.06 |
H4 | 449 | 237 | 14.76 | 0.06 |
H5 | 368 | 177 | 10.7 | 0.06 |
H6 | 121 | 114 | 149.6 | 1 |
H7 | 202 | 185 | 258.2 | 1 |
H8 | 185 | 113 | 8.38 | 1 |
H9 | 140 | 120 | 59.89 | 1 |
H10 | 69 | 66 | 165.79 | 1 |
H11 | 120 | 68 | 8.74 | 1 |
H12 | 67 | 35 | 7.62 | 1 |
H13 | 1 034.5 | 576 | 21.3 | 0.06 |
C1 | 123 | 343 | 10.61 | 0.06 |
C2 | 20 | 156 | 6.65 | 1.2 |
C3 | 156 | 157 | 3 291 | 2 |
C4 | 20 | 182 | 26.63 | 1.2 |
C5 | 182 | 318 | 31.19 | 1.2 |
C6 | 318 | 320 | 4 011.83 | 2 |
C7 | 322 | 923.78 | 17.6 | 0.06 |
HU | 927 | 927 | 5 | |
CU | 9 | 17 | 1 | |
Annual cost of heat exchangers=4000+500A0.83 $·a-1; | ||||
Annual cost of hot utility=250 $·kW-1·a -1; | ||||
Annual cost of cold utility=25 $·kW-1·a -1 |
Units | QHU/MW | QCU/MW | TAC/($·a-1) | |
Ref.[ | 21 | 1.938 | 0.107 | 1 537 086 |
Ref.[ | 21 | 1.938 | 0.107 | 1 516 482 |
Ref.[ | 20 | 1.831 | 0.000 | 1 407 203 |
Ref.[ | 22 | 2.077 | 0.250 | 1 462 363 |
Ref.[ | 21 | 1.831 | 0.000 | 1 411 131 |
Ref.[ | 21 | 1.831 | 0.000 | 1 403 581 |
This work | 21 | 1.831 | 0.000 | 1 395 616 |
表6 算例2与文献结果
Table 6 Results in Case 2 and in literature
Units | QHU/MW | QCU/MW | TAC/($·a-1) | |
Ref.[ | 21 | 1.938 | 0.107 | 1 537 086 |
Ref.[ | 21 | 1.938 | 0.107 | 1 516 482 |
Ref.[ | 20 | 1.831 | 0.000 | 1 407 203 |
Ref.[ | 22 | 2.077 | 0.250 | 1 462 363 |
Ref.[ | 21 | 1.831 | 0.000 | 1 411 131 |
Ref.[ | 21 | 1.831 | 0.000 | 1 403 581 |
This work | 21 | 1.831 | 0.000 | 1 395 616 |
1 |
KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers and Chemical Engineering, 2009, 33 (8): 1363- 1370.
DOI |
2 | FURMAN K C, SAHINIDIS N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century[J]. Industrial & Engineering Chemistry Research, 2002, 41 (10): 2335- 2370. |
3 | FURMAN K C, SAHINIDIS N V. Computational complexity of heat exchanger network synthesis[J]. Computers and Chemical Engineering, 2001, 25 (9): 1371- 1390. |
4 | WEI G F, YAO P J, LUO X, et al. Study on multi-stream heat exchanger network synthesis with parallel genetic/simulated annealing algorithm[J]. Chinese Journal of Chemical Engineering, 2004, 12 (1): 66- 77. |
5 |
HUO Z Y, ZHAO L, YIN H C, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. The Canadian Journal of Chemical Engineering, 2013, 91 (5): 830- 842.
DOI |
6 | DUAN Huanhuan, CUI Guomin, CHEN Jiaxing, et al. A strategy of differential evolution with opposition-based multi-population parallel[J]. Chinese Journal of Computational Physics, 2016, 33 (5): 561- 569. |
7 |
RAVAGNANI M A S S, SILVA A P, ARROYO P A, et al. Heat exchanger network synthesis and optimisation using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25 (7): 1003- 1017.
DOI |
8 |
SILVA A P, RAVAGNANI M, BISCAIA E C, et al. Optimal heat exchanger network synthesis using particle swarm optimization[J]. Optim Eng, 2010, 11 (3): 459- 470.
DOI |
9 | KHORASANY R M, FESANGHARY M. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers & Chemical Engineering, 2009, 33 (8): 1363- 1370. |
10 |
PAVÃO L V, COSTA C B B, RAVAGNANI M A S S, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. Aiche Journal, 2017, 63 (5): 1582- 1602.
DOI |
11 | 肖媛, 崔国民, 李帅龙. 强制进化随机游走算法(RWCE)应用于换热网络优化[J]. 化工学报, 2016, 67 (12): 5140- 5147. |
12 | YU Shengnan, CUI Guomin, XIAO Yuan, et al. An improved accepting imperfect network strategy for RWCE algorithm in heat exchanger network synthesis[J]. Chinese Journal of Computational Physics, 2017, 34 (4): 445- 452. |
13 | XIAO Y. Global optimization methods and superstructure model for heat integration of heat exchanger networks[D]. Shanghai: University of Shanghai for Science and Technology, 2018. |
14 | 苏戈曼, 崔国民, 肖媛, 等. 换热网络优化中换热单元生成频次的影响分析及策略改进[J]. 化工进展, 2020, 39 (10): 3879- 3891. |
15 | LI Jian, CUI Guomin, CHEN Jiaxing, et al. Simultaneous synthesis of heat exchanger network by random walk algorithm with compulsive evolution based on trilevel protection strategy[J]. Chinese Journal of Computational Physics, 2019, 36 (1): 69- 79. |
16 | PINTARIC Z N, KRAVANJA Z. A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters[J]. Energy, 2015, 92 (3): 373- 382. |
17 | ESCOBAR M, TRIERWEILER J O. Optimal heat exchanger network synthesis: A case study comparison[J]. Applied Thermal Engineering, 2013, 51 (1/2): 801- 826. |
18 | PAVÃO L V, COSTA C B B. Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing[J]. Computers & Chemical Engineering, 2016, 94 (3): 370- 386. |
19 | RATHJENS M, FIEG G. A novel hybrid strategy for cost-optimal heat exchanger network synthesis suited for large-scale problems[J]. Applied Thermal Engineering, 2019, 11 (10): 167- 178. |
20 | BAO Z, CUI G, CHEN J, et al. A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis[J]. Energy, 2018, 152 (c): 694- 708. |
21 | CAO M, CUI G, CHEN J, et al. Heat exchanger network optimization based on participatory evolution strategy for fluids[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34 (3): 776- 785. |
22 | XIAO Y, KAYANGE H A, CUI G M, et al. Non-structural model of heat exchanger network: Modeling and optimization[J]. International Journal of Heat and Mass Transfer, 2019, 140 (9): 752- 766. |
[1] | 韩新宇, 段欢欢, 崔国民, 肖媛, 杨其国, 张冠华. 公用工程灵活匹配的节点非结构拓展模型[J]. 计算物理, 2022, 39(6): 707-716. |
[2] | 韩新宇, 崔国民, 肖媛, 张冠华, 高远. 动态区域禁忌匹配策略提高新生换热单元竞争力[J]. 计算物理, 2022, 39(1): 71-82. |
[3] | 姜逸文, 崔国民, 陈子禾, 俞佳明, 赵倩倩. 智能调整接受差解几率的RWCE算法[J]. 计算物理, 2021, 38(3): 333-342. |
[4] | 徐玥, 崔国民. 应用结构摄动策略的有分流换热网络优化[J]. 计算物理, 2020, 37(6): 734-744. |
[5] | 李万总, 崔国民, 孙涛, 肖媛. 垂直非结构模型应用于换热网络优化[J]. 计算物理, 2020, 37(4): 448-458. |
[6] | 邓炜栋, 崔国民, 朱玉双. 应用固定投资费用松弛策略的换热网络优化[J]. 计算物理, 2019, 36(5): 610-620. |
[7] | 李剑, 崔国民, 陈家星, 肖媛. 采用三层保护策略的强制进化随机游走算法同步综合换热网络[J]. 计算物理, 2019, 36(1): 69-79. |
[8] | 朱玉双, 崔国民, 肖媛, 陈家星. 采用单元进化限制策略的RWCE算法优化换热网络[J]. 计算物理, 2017, 34(5): 593-602. |
[9] | 于盛男, 崔国民, 肖媛, 周剑卫. 应用于换热网络优化的RWCE算法接受差解策略分析与改进[J]. 计算物理, 2017, 34(4): 445-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发