计算物理 ›› 2021, Vol. 38 ›› Issue (4): 431-440.DOI: 10.19596/j.cnki.1001-246x.8310
收稿日期:
2020-11-23
出版日期:
2021-07-25
发布日期:
2021-12-21
通讯作者:
许坤远
作者简介:
程受广(1996-), 研究生, 研究方向为平面纳米器件, E-mail: cheng-sg@m.scnu.edu.cn
Shouguang CHENG(), Yunqian YIN, Julian ZHONG, Kunyuan XU(
)
Received:
2020-11-23
Online:
2021-07-25
Published:
2021-12-21
Contact:
Kunyuan XU
摘要:
通过求解电子的维格纳方程研究二维电子气中电子的输运性质。我们发现电子在倾斜入射到势垒界面并反射时, 出现与光波类似的古斯-汉欣位移。通过维格纳方程可以得到电子的瞬态演化, 不仅可以计算古斯-汉欣位移还能研究电子在势垒内部的运动轨迹以及出现稳定古斯-汉欣位移的时间。与稳定相位法得到的古斯-汉欣位移对比发现, 考虑古斯-汉欣位移的界面反射较几何光学反射在时间上有一定迟缓, 这种迟缓与入射角无关, 但会随着势垒宽度的增加而增加; 电子的古斯-汉欣位移与势垒厚度无关, 随着入射角或入射能量的增大而增大。基于此, 我们提出一种电子分束器模型, 向输入端注入初始动能不同的高斯波包, 当电子能量低于0.01 eV时, 约85%的电子运动至第二输出端; 而当电子能量高于0.07 eV时, 约85%的电子运动至第一输出端。
中图分类号:
程受广, 尹云倩, 钟菊莲, 许坤远. 基于维格纳方程的电子的古斯-汉欣位移[J]. 计算物理, 2021, 38(4): 431-440.
Shouguang CHENG, Yunqian YIN, Julian ZHONG, Kunyuan XU. Goos-Hanchen Shift of Electrons Based on Wigner Equation[J]. Chinese Journal of Computational Physics, 2021, 38(4): 431-440.
Lx/nm | Ly/nm | Lc/nm | Δk/nm-1 | Δl/fs | Δx/nm | Δy/nm | kx0/nm-1 | σ/nm | 势垒宽度a/nm | 势垒高度/eV |
150 | 150 | 100 | π/Lc | 1.0 | 1.0 | 1.5 | 0.25 | 10 | 10 | 0.05 |
表1 模拟参数
Table 1 Simulation parameters
Lx/nm | Ly/nm | Lc/nm | Δk/nm-1 | Δl/fs | Δx/nm | Δy/nm | kx0/nm-1 | σ/nm | 势垒宽度a/nm | 势垒高度/eV |
150 | 150 | 100 | π/Lc | 1.0 | 1.0 | 1.5 | 0.25 | 10 | 10 | 0.05 |
图2 优化再分配方案对比(a), (b), (c)为原程序密度分布;(d), (e), (f)为优化后密度分布
Fig.2 Comparison of optimizing redistribution scheme (a), (b), (c) are density distributions by the original program; (d), (e), (f) represent density distributions after optimization
线程数 | 计算时间/s | 加速比 |
1 | 94 443 | 1 |
2 | 54 627 | 1.73 |
3 | 36 064 | 2.62 |
4 | 30 710 | 3.08 |
5 | 28 684 | 3.29 |
6 | 23 071 | 4.09 |
7 | 21 187 | 4.45 |
8 | 19 285 | 4.9 |
表2 方势垒演化的线程-加速比
Table 2 Thread-acceleration ratios of thesquare barrier evolution
线程数 | 计算时间/s | 加速比 |
1 | 94 443 | 1 |
2 | 54 627 | 1.73 |
3 | 36 064 | 2.62 |
4 | 30 710 | 3.08 |
5 | 28 684 | 3.29 |
6 | 23 071 | 4.09 |
7 | 21 187 | 4.45 |
8 | 19 285 | 4.9 |
图9 不同入射能量的波包在势垒界面的运动(a)初始时刻波包位置;(b)入射动能E=0.01 eV波包在t=270 fs时的位置;(c)入射动能E=0.028 eV波包在t=180 fs时的位置;(d)入射动能E=0.07 eV波包在t=140 fs时的位置
Fig.9 Movement of wave packets with different incident energy at the barrier interface (a) Initial position of the wave packet; (b) Position of a incident kinetic energy E=0.01 eV wave packet at t=270 fs; (c) Position of a incident kinetic energy E=0.028 eV wave packet at t=180 fs; (d) Position of a incident kinetic energy E=0.0 7 eV wave packet at t=140 fs
1 |
GOOS F, HÄNCHEN H. Ein neuer und fundamentaler versuch zur total reflexion[J]. Annalen der Physik, 1947, 436 (7-8): 333- 346.
DOI |
2 |
GOOS F, HÄNCHEN H. Neumessung des Strahlversetzung seffektes bei total reflexion[J]. Annalen der Physik, 1949, 440 (3-5): 251- 252.
DOI |
3 |
ARTMANN K. Berechnung der Seitenversetzung des total reflektierten Strahles[J]. Annalen der Physik, 1948, 437 (1-2): 87- 102.
DOI |
4 |
RENARD R H. Total reflection: A new evaluation of the Goos-Hänchen shift[J]. Journal of the Optical Society of America, 1964, 54 (10): 1190- 1197.
DOI |
5 |
YU Z M, LIU Y, YANG S A. Anomalous spatial shifts in interface electronic scattering[J]. Frontiers of Physics, 2019, 14 (3): 33402.
DOI |
6 |
BLIOKH K Y, AIELLO A. Goos-Hänchen and Imbert-Fedorov beam shifts: An overview[J]. Journal of Optics, 2013, 15 (1): 014001.
DOI |
7 |
SINITSYN N A, NIU Q, SINOVA J, et al. Disorder effects in the anomalous Hall effect induced by Berry curvature[J]. Physical Review B, 2005, 72 (4): 045346.
DOI |
8 |
BALLICCHIA M, WEINBUB J, NEDJALKOV . Electron evolution around a repulsive dopant in a quantum wire: Coherence effects[J]. Nanoscale, 2018, 10 (48): 23037- 23049.
DOI |
9 |
SELLIER J M, KAPANOVA K G. A study of entangled systems in the many-body signed particle formulation of quantum mechanics[J]. International Journal of Quantum Chemistry, 2017, 117 (23): e25447.
DOI |
10 |
WIGNER E P. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40, 749.
DOI |
11 |
SELLIER J M. A signed particle formulation of non-relativistic quantum mechanics[J]. Journal of Computational Physics, 2015, 297, 254- 265.
DOI |
12 | SELLIER J M, NEDJALKOV M, DIMOV I, et al. A benchmark study of the Wigner Monte Carlo method[J]. Monte Carlo Methods and Applications, 2014, 20 (1): 43- 51. |
13 |
WEINBUB J, FERRY D K. Recent advances in Wigner function approaches[J]. Applied Physics Reviews, 2018, 5 (4): 041104.
DOI |
14 |
KIM K Y, LEE B. On the high order numerical calculation schemes for the Wigner transport equation[J]. Solid-State Electronics, 1999, 43 (12): 2243- 2245.
DOI |
15 |
KIM K Y, KIM S, TANG T. Accuracy balancing for the finite-difference-based solution of the discrete Wigner transport equation[J]. Journal of Computational Electronics, 2017, 16 (1): 148- 154.
DOI |
16 |
SHAO S, LU T, CAI W. Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport[J]. Communications in Computational Physics, 2011, 9 (3): 711- 739.
DOI |
17 |
SCHULZ L, SCHULZ D. Application of a slowly varying envelope function onto the analysis of the Wigner transport equation[J]. IEEE Transactions on Nanotechnology, 2016, 15 (5): 801- 809.
DOI |
18 |
LEE J H, SHIN M. Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses[J]. IEEE Transactions on Nanotechnology, 2017, 16 (6): 1028- 1036.
DOI |
19 |
DORDA A, SCHURRER F. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes[J]. Journal of Computational Physics, 2015, 284, 95- 116.
DOI |
20 | SHIFREN L, FERRY D. A Wigner function based ensemble Monte Carlo approach for accurate incorporation of quantum effects in device simulation[J]. Journal of Computational Electronics, 2002, 1 (1-2): 55- 58. |
21 | ELLINGHAUS P, NEDJALKOV M, SELBERHERR S. The influence of electrostatic lenses on wave packet dynamics[C]. International Conference on Large-Scale Scientific Computing, Springer, Cham, 2015: 277-284. |
22 | LI Gang, ZHANG Baoyin, DENG Li, SHANGGUAN Danhua, et al. Pseudo-random numbers for identical results on varying numbers of processors in domain decomposed particle Monte Carlo simulations[J]. Chinese J Comput Phys, 2017, 34 (1): 67- 72. |
23 | XU Haiyan, HUANG Zhengfeng, CAI Shaohui. Global variance reduction method for Monte Carlo particle transport problemes[J]. Chinese J Comput Phys, 2010, 27 (5): 722- 732. |
24 | HU Xiaoyan, CAO Xiaolin, GUO Hong, et al. Parallel algorithm of coupled Fourier transform and fluid numerical computation[J]. Chinese J Comput Phys, 2012, 29 (4): 484- 488. |
25 | ELLINGHAUS P. Two-dimensional Wigner Monte Carlo simulation for time-resolved quantum transport with scattering[D]. Vienna: Universität Wien, 2016. |
26 | CHEN X, LI C F, BAN Y. Novel shift in transmission through a two-dimensional semiconductor barrier[J]. Physics Letters A, 2006, 354 (1/2): 161- 165. |
27 |
BOCQUILLON E, PARMENTIER F D, GRENIER C, et al. Electron quantum optics: Partitioning electrons one by one[J]. Physical Review Letters, 2012, 108 (19): 196803.
DOI |
28 |
ELLINGHAUS P, WEINBUB J, NEDJALKOV M, et al. Analysis of lense-governed Wigner signed particle quantum dynamics[J]. Physica Status Solidi-Rapid Research Letters, 2017, 11 (7): 1700102.
DOI |
[1] | 徐小东, 周彬, 郭金川, 易明皓, 肖飞虎. 微结构X射线源中电子与阳极作用的蒙特卡罗模拟[J]. 计算物理, 2018, 35(1): 95-102. |
[2] | 李超龙, 石海泉, 吕建钦. 双圆筒加速透镜中强流束传输的模拟[J]. 计算物理, 2013, 30(3): 403-408. |
[3] | 王莉萍, 唐天同. 一种自动微分技术:微分代数及其在带电粒子光学中的应用[J]. 计算物理, 1999, 16(3): 225-234. |
[4] | 周庆, 陈尔纲, 胡宗高. 磁六极球差校正系统的计算与分析[J]. 计算物理, 1997, 14(S1): 485-486. |
[5] | 宋志棠, 刘纯亮, 夏慧琴. 环形电场轴向三阶色散象差系数解析表达式的计算机推导[J]. 计算物理, 1997, 14(3): 368-374. |
[6] | 雷威, 童林夙. 彩色显示管电子光学系统的计算和分析[J]. 计算物理, 1996, 13(3): 323-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发