1 |
ZHONG G X , WEI D Q , ZHANG B . Remote chaotic synchronous control of inductive load in distributed power generation system[J]. Chinese Journal of Computational Physics, 2019, 36 (6): 719- 725.
|
2 |
LIU L H , WEI D Q , ZHANG B . Synchronization control of chaos in complex motor networks with small-world topology based on dynamic relaying[J]. Chinese Journal of Computational Physics, 2018, 35 (6): 750- 756.
|
3 |
LU Y D , WEI D Q . Chaotic time series prediction of power system by using optimized time spectrum neural network[J]. Chinese Journal of Computational Physics, 2022, 39 (3): 371- 378.
|
4 |
ZHENG L , LIU Z , SHEN J , et al. Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output[J]. Applied Energy, 2018, 229 (4): 1128- 1139.
|
5 |
ZHANG C T , MA Q L , PENG H . Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction[J]. Acta Phys Sin, 2010, 59 (11): 7623- 7629.
DOI
|
6 |
LIU C , LIU C , SHANG Y , et al. An adaptive prediction approach based on workload pattern discrimination in the cloud[J]. Journal of Network and Computer Applications, 2017, 80 (6): 35- 44.
|
7 |
ZHOU Y H , LIU H Q , QI P , et al. Forecast of oil production in fractured-vuggy reservoir by using recurrent neural networks[J]. Chinese Journal of Computational Physics, 2018, 35 (6): 668- 674.
|
8 |
GRIFFITH A , POMERANCE A , GAUTHIER D J . Forecasting chaotic systems with very low connectivity reservoir computers[J]. Chaos, 2019, 29 (12): 123108.
DOI
|
9 |
LYMBURN T , KHOR A , STEMLER T , et al. Consistency in echo-state networks[J]. Chaos, 2019, 29 (2): 023118.
DOI
|
10 |
PATHAK J , HUNT B , GIRVAN M , et al. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach[J]. Physical Review Letters, 2018, 120 (2): 024102.
DOI
|
11 |
GAUTHIER D J , BOLLT E , GRIFFITH A , et al. Next generation reservoir computing[J]. Nature Communications, 2021, 12 (1): 1- 8.
DOI
|
12 |
HART A G , HOOK J L , DAWES J . Echo state networks trained by Tikhonov least squares are L2(μ) approximators of ergodic dynamical systems[J]. Physica D, 2021, 421 (5): 132882.
|
13 |
GONON L , ORTEGA J P . Fading memory echo state networks are universal[J]. Neural Networks, 2021, 138 (11): 10- 13.
|
14 |
JAEGER H , HAAS H . Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication.[J]. Science, 2004, 304 (5667): 78- 80.
DOI
|
15 |
MAASS W , NATSCHLAGER T , MARKRAM H . Real-time computing without stable states: A new framework for neural computation based on perturbations[J]. Neural Computation, 2002, 14 (11): 2531- 2560.
DOI
|
16 |
CHEN H C , WEI D Q . Chaos prediction and synchronization of motor system based on reservoir computing[J]. Vibration and Shock, 2021, 40 (16): 199- 203.
|
17 |
SORIANO M C , ORTÍN S , KEUNINCKX L , et al. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation[J]. IEEE transactions on neural networks and learning systems, 2014, 26 (2): 388- 393.
|
18 |
JAURIGUE L , ROBERTSON E , WOLTERS J , et al. Reservoir computing with delayed input for fast and easy optimisation[J]. Entropy, 2021, 23 (12): 1560.
DOI
|
19 |
WU D , YI Y S , ZHANG Y X . A brief review of integrated and passive photonic reservoir computing systems and an approach for achieving extra non-linearity in passive devices[J]. Science China (Information Sciences), 2020, 63 (6): 97- 104.
|
20 |
REN K , ZHANG W Y , WANG F , et al. Next-generation reservoir computing based on memristor array[J]. Acta Phys Sin, 2022, 71 (14): 140701.
DOI
|
21 |
ZHONG G X , WEI D Q , ZHANG B . Chaos prediction and synchronization of motor system based on reservoir computing[J]. Vibration and Shock, 2020, 39 (7): 8- 14.
|
22 |
WEI D Q , LUO X S , WANG B H , et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J]. Physics Letters A, 2007, 363 (1-2): 71- 77.
DOI
|
23 |
WEI D Q , ZHANG B . Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory[J]. Chinese Physics B, 2009, 18 (4): 1399- 1403.
|
24 |
YANG Y F , LUO M Z , XING S B , et al. Analysis of chaos in permanent magnet synchronous generator and optimal output feedback H∞ control.[J]. Acta Phys Sin, 2015, 64 (5): 050503.
|
25 |
QING X , NIU Y . Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148, 461- 468.
|
26 |
REN X , LIU S , YU X D , et al. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM[J]. Energy, 2021, 234, 121236.
|
27 |
LU Z , HUNT B R , OTT E . Attractor reconstruction by machine learning[J]. Chaos, 2018, 28 (6): 061104.
|
28 |
PATHAK J , LU Z , HUNT B R , et al. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data[J]. Chaos, 2017, 27 (12): 121102.
|