计算物理 ›› 2023, Vol. 40 ›› Issue (6): 666-676.DOI: 10.19596/j.cnki.1001-246x.8654
收稿日期:
2022-10-18
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
王亚辉
作者简介:
郭城, 男, 硕士, 讲师, 研究方向为计算流体力学, E-mail: gc_scv@163.com
基金资助:
Cheng GUO(), Pengdan CHENG, Yahui WANG(
)
Received:
2022-10-18
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yahui WANG
摘要:
介绍一种修正模板近似方法, 即改进经典五阶WENO-JS格式中各候选子模板上数值通量的二阶多项式逼近, 通过加入三次修正项使模板逼近达到四阶精度, 并且通过引入可调函数使其具有ENO性质。将这种修正模板近似方法运用到WENO-Z+和WENO-Z+M格式中, 发展基于修正模板类型的WENO-Z+格式(WENO-MS-Z+, WENO-MS-Z+M)。通过数值算例对格式进行数值测试, 结果显示: 该格式具有强健的激波捕捉能力和对小尺度波结构的高分辨率, 与原WENO-Z+和WENO-Z+M格式相比改进明显。
中图分类号:
郭城, 程鹏丹, 王亚辉. 修正模板改进的五阶WENO-Z+格式[J]. 计算物理, 2023, 40(6): 666-676.
Cheng GUO, Pengdan CHENG, Yahui WANG. Improved Fifth-order WENO-Z+ Schemes Based on Modified Stencil[J]. Chinese Journal of Computational Physics, 2023, 40(6): 666-676.
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 2.57 × 10-4 | 3.40 × 10-4 | 3.32 × 10-4 | 3.13 × 10-4 | |||||||
40 | 8.04 × 10-6 | 5.00 | 9.60 × 10-6 | 5.15 | 9.20 × 10-6 | 5.17 | 9.01 × 10-6 | 5.12 | |||
80 | 2.44 × 10-7 | 5.04 | 2.56 × 10-7 | 5.23 | 2.50 × 10-7 | 5.20 | 2.44 × 10-7 | 5.21 | |||
160 | 8.07 × 10-9 | 4.92 | 7.61 × 10-9 | 5.07 | 7.21 × 10-9 | 5.11 | 6.97 × 10-9 | 5.13 | |||
320 | 2.47 × 10-10 | 5.03 | 2.38 × 10-10 | 5.00 | 2.16 × 10-10 | 5.06 | 2.06 × 10-10 | 5.08 |
表1 线性对流方程(20)在式(21)初值①下,不同格式在t=2时的L1误差与收敛阶
Table 1 L1 errors and convergence rates at t=2 of different schemes for the linear advection Eq.(20) with the initial data ① of Eq.(21)
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 2.57 × 10-4 | 3.40 × 10-4 | 3.32 × 10-4 | 3.13 × 10-4 | |||||||
40 | 8.04 × 10-6 | 5.00 | 9.60 × 10-6 | 5.15 | 9.20 × 10-6 | 5.17 | 9.01 × 10-6 | 5.12 | |||
80 | 2.44 × 10-7 | 5.04 | 2.56 × 10-7 | 5.23 | 2.50 × 10-7 | 5.20 | 2.44 × 10-7 | 5.21 | |||
160 | 8.07 × 10-9 | 4.92 | 7.61 × 10-9 | 5.07 | 7.21 × 10-9 | 5.11 | 6.97 × 10-9 | 5.13 | |||
320 | 2.47 × 10-10 | 5.03 | 2.38 × 10-10 | 5.00 | 2.16 × 10-10 | 5.06 | 2.06 × 10-10 | 5.08 |
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 4.36 × 10-3 | 4.19 × 10-3 | 1.95 × 10-3 | 1.75 × 10-3 | |||||||
40 | 1.37 × 10-4 | 4.98 | 1.31 × 10-4 | 4.99 | 6.10 × 10-5 | 4.99 | 5.47 × 10-5 | 5.00 | |||
80 | 4.58 × 10-6 | 5.00 | 3.58 × 10-6 | 5.19 | 1.56 × 10-6 | 5.29 | 1.50 × 10-6 | 5.19 | |||
160 | 1.43 × 10-7 | 5.00 | 1.16 × 10-7 | 4.95 | 4.41 × 10-8 | 5.14 | 4.23 × 10-8 | 5.15 | |||
320 | 4.44 × 10-9 | 5.03 | 3.57 × 10-9 | 5.02 | 1.38 × 10-9 | 5.00 | 1.32 × 10-9 | 5.00 |
表2 线性对流方程(20)在式(21)初值②下,不同格式在t=2时的L1误差与收敛阶
Table 2 L1 errors and convergence rates at t=2 of different schemes for the linear advection Eq.(20) with the initial data ② of Eq.(21)
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 4.36 × 10-3 | 4.19 × 10-3 | 1.95 × 10-3 | 1.75 × 10-3 | |||||||
40 | 1.37 × 10-4 | 4.98 | 1.31 × 10-4 | 4.99 | 6.10 × 10-5 | 4.99 | 5.47 × 10-5 | 5.00 | |||
80 | 4.58 × 10-6 | 5.00 | 3.58 × 10-6 | 5.19 | 1.56 × 10-6 | 5.29 | 1.50 × 10-6 | 5.19 | |||
160 | 1.43 × 10-7 | 5.00 | 1.16 × 10-7 | 4.95 | 4.41 × 10-8 | 5.14 | 4.23 × 10-8 | 5.15 | |||
320 | 4.44 × 10-9 | 5.03 | 3.57 × 10-9 | 5.02 | 1.38 × 10-9 | 5.00 | 1.32 × 10-9 | 5.00 |
图5 激波等熵波相互作用(Shu-Osher)的密度分布(t=1.8, CFL=0.6, N=400)
Fig.5 Density contours of Shock isentropic wave interaction (shu-osher) problem at t=1.8, N=400, CFL=0.6
图6 2D Riemann问题的密度等值线(Δx=Δy=1/400, CFL=0.5, t=0.8) (a)WENO-Z+; (b)WENO-MS-Z+; (c)WENO-Z+M; (d)WENO-MS-Z+M
Fig.6 Density contours of 2D Riemann problem on 401 × 401 grid points at t=0.8, CFL=0.5 (a) WENO-Z+; (b) WENO-MS-Z+; (c) WENO-Z+M; (d) WENO-MS-Z+M
图7 双马赫反射问题在t=0.2的密度等值线(网格点为961 × 241, CFL=0.5) (a)WENO-Z+; (b)WENO-MS-Z+; (c)WENO-Z+M; (d)WENO-MS-Z+M
Fig.7 Density contours of double Mach reflection problem on 961 × 241 grid points at t=0.2, CFL=0.5 (a) WENO-Z+; (b) WENO-MS-Z+; (c) WENO-Z+M; (d) WENO-MS-Z+M
1 |
LIU XD , OSHER S , CHAN T . Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115 (1): 200- 212.
DOI |
2 |
HARREN A , ENGQUIST B , OSHER S , et al. Uniformly high-order accurate essentially non-oscillatory schemes Ⅲ[J]. Journal of Computational Physics, 1987, 71 (2): 231- 303.
DOI |
3 |
JIANG G S , SHU C W . Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126 (1): 202- 228.
DOI |
4 |
HENRICK A K , ASLAM T D , POWERS J M . Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207 (2): 542- 567.
DOI |
5 |
BORGES R , CARMONA M , COSTA B , et al. An improved WENO scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227 (6): 3191- 3211.
DOI |
6 |
HA Y , KIM C H , LEE Y J , et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J]. Journal of Computational Physics, 2013, 232 (1): 68- 86.
DOI |
7 | FAN P , SHEN Y Q , TIAN B L , et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269 (1): 329- 354. |
8 | YAN Z G , LIU H Y , MAO M L , et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers and Fluids, 2016, 127 (1): 226- 240. |
9 |
CHANG H K , YOUNGSOO H , JUNGHO Y . Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2016, 67 (1): 299- 323.
DOI |
10 |
CASTRO M , COSTA B , DON W S . High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230 (5): 1766- 1792.
DOI |
11 | DON W S , BORGES R . Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J]. Journal of Computational Physics, 2013, 250 (4): 347- 372. |
12 |
ARANDIGA F , BAEZA A , BELDA A M , et al. Analysis of WENO schemes for full and global accuracy[J]. SIAM Journal on Numerical Analysis, 2011, 49 (2): 893- 915.
DOI |
13 | BORGES R. Recent results on the Improved WENO-Z+ Scheme[M]//Bittencourt M, Dumont N, Hesthaven J, eds. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_39. |
14 | WANG Yahui . A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 224- 236. |
15 |
WANG Y , DU Y , ZHAO K , et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2019, 81 (2): 898- 922.
DOI |
16 |
WANG Y , DU Y , ZHAO K , et al. A new 6th-order WENO scheme with modified stencils[J]. Computers and Fluids, 2020, 208, 104625.
DOI |
17 | ZENG F , SHEN Y , LIU SP . A perturbational weighted essentially non-oscillatory scheme[J]. Computers and Fluids, 2018, 172 (8): 196- 208. |
18 | GUO Z T , FENG R Z . A high order accuracy corrected hermite-ENO scheme[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 141- 152. |
19 | GUO Y , TIAN Q , LIANG X , et al. A hybrid WENO scheme for resolution optimization[J]. Chinese Journal of Computational Physics, 2018, 35 (4): 397- 404. |
20 | ACKER F , BORGES R , COSTA B . An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313 (5): 726- 753. |
21 |
XU W , WU W . An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75 (3): 1808- 1841.
DOI |
22 | XU W , KONG X , WU W . An improved third-order WENO-Z+3 scheme and its application[J]. Chinese Journal of Computational Physics, 2018, 35 (1): 13- 21. |
23 |
LUO Xin , WU Songping . An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2021, 445, 110608.
DOI |
24 | SHU C W , OSHER S . Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J]. Journal of Computational Physics, 1989, 83 (3): 32- 78. |
25 |
SOD G . A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27 (1): 1- 31.
DOI |
26 |
LAX P D . Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7 (1): 159- 193.
DOI |
27 | WOODWARD P , COLELLA P . The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54 (1): 447- 465. |
[1] | 郑素佩, 建芒芒, 封建湖, 翟梦情. 保号WENO-AO型中心迎风格式[J]. 计算物理, 2022, 39(6): 677-686. |
[2] | 李理, 刘晓艳, 李新亮, 田保林, 梁贤, 哈金才. 高精度格式非线性权的统计谱特性分析[J]. 计算物理, 2019, 36(2): 127-140. |
[3] | 郭子滔, 冯仁忠. 一种高精度的修正Hermite-ENO格式[J]. 计算物理, 2019, 36(2): 141-152. |
[4] | 赵丰祥, 潘亮, 王双虎. 基于非结构四边形网格的WENO格式[J]. 计算物理, 2018, 35(5): 525-534. |
[5] | 程晓晗, 聂玉峰, 蔡力, 封建湖. 基于移动网格的熵稳定格式[J]. 计算物理, 2017, 34(2): 175-182. |
[6] | 任炯, 封建湖, 刘友琼, 梁楠. 求解双曲守恒律方程的高分辨率熵相容格式[J]. 计算物理, 2014, 31(5): 539-551. |
[7] | 冯涛, 蔚喜军, 安恒斌, 崔霞, 吴迪, 李珍珍. Lax-Wendroff时间离散的自适应间断有限元方法求解三维可压缩欧拉方程[J]. 计算物理, 2013, 30(6): 791-798. |
[8] | 吴迪, 蔚喜军, 徐云. 局部时间步长间断有限元方法求解三维欧拉方程[J]. 计算物理, 2011, 28(1): 1-9. |
[9] | 罗力, 封建湖, 唐小娟, 向量. 求解双曲守恒律方程的高分辨率熵稳定格式[J]. 计算物理, 2010, 27(5): 671-678. |
[10] | 吴迪, 蔚喜军. 自适应间断有限元方法求解三维欧拉方程[J]. 计算物理, 2010, 27(4): 492-500. |
[11] | 陈大伟, 蔚喜军. 一维双曲守恒律的龙格-库塔控制体积间断有限元方法[J]. 计算物理, 2009, 26(4): 501-509. |
[12] | 徐云, 蔚喜军. 自适应间断有限元方法求解双曲守恒律方程[J]. 计算物理, 2009, 26(2): 159-168. |
[13] | 蔚喜军, 符鸿源, 常谦顺. 用有限元方法求解双曲守恒律[J]. 计算物理, 1999, 16(5): 457-466. |
[14] | 朱庆勇, 马延文. 求解双曲型守恒律方程的高精度迎风紧致群速度控制法[J]. 计算物理, 1998, 15(5): 531-536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发