[1] 崔桂香, 许春晓, 张兆顺. 湍流大涡数值模拟进展[J]. 空气动力学学报, 2004, 22(2):121-129. [2] LI X, FU D, MA Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone[J]. Aiaa Journal, 2008, 46(11):2899-2913. [3] YU C, XIAO Z, LI X. Scale-adaptive subgrid-scale modelling for large-eddy simulation of turbulent flows[J]. Physics of Fluids, 2017, 29(3):035101. [4] XU Youping, CHENG Yufeng, WANG Bin, et al. Parallel-program development and experiment of regional atmospheric model based on JASMIN framework[J]. Chinese Journal of Computational Physics, 2017, 34(1):47-60. [5] DUAN Maochang, YU Xijun, CHEN Dawei, et al. DG Method for compressible gas-solid two-phase flow[J]. Chinese Journal of Computational Physics, 2017, 34(6):631-640. [6] LI Xindong, ZHAO Yingkui, OUYANG Biyao, et al. Numerical investigation of bulk viscosity effect on two-dimensional toroidal shock wave focusing[J]. Chinese Journal of Compuational Physics, 2017, 34(4):394-402. [7] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1):163-194. [8] LI Xindong, HU Zongmin, ZHANG Deliang, et al. A flux splitting scheme based on AUSM[J]. Chinese Journal of Compuational Physics, 2015, 32(1):1-12. [9] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. [10] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2):231-303. [11] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. [12] RAFAEL B, MONIQUE C, BRUNO C, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211. [13] QIU J, SHU C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:One-dimensional case[J]. Journal of Computational Physics, 2004, 193(1):115-135. [14] REN Y X, ZHANG H. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2):365-386. [15] SHEN Y, YANG G. Hybrid finite compact-WENO schemes for shock calculation[J]. International Journal for Numerical Methods in Fluids, 2007, 53(4):531-560. [16] FAN P, SHEN Y, TIAN B, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269(10):329-354. [17] PENG J, SHEN Y. A novel weighting switch function for uniformly high-order hybrid shock-capturing schemes[J]. International Journal for Numerical Methods in Fluids, 2017, 83(9):681-703. [18] XU Xihua, NI Guoxi. A High-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows[J]. Chinese Journal of Compuational Physics, 2013, 30(4):509-514. [19] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-42. [20] TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2):262-281. [21] WEIRS V, CANDLER G, WEIRS V, et al. Optimization of weighted ENO schemes for DNS of compressible turbulence[C]. 13th Computational Fluid Dynamics Conference, Snowmass Village, United States, 1997. [22] HILL D J, PULLIN D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics, 2004, 194(2):435-450. [23] MARTÍN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289. [24] TAYLOR E M, WU M, Martín M P. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J]. Journal of Computational Physics, 2007, 223(1):384-397. [25] DENG X, ZHANG H. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-44. [26] FU D, MA Y. A high order accurate difference scheme for complex flow fields[J]. Journal of Computational Physics, 1997, 134(1):1-15. [27] MA Y, FU D. Fourth order accurate compact scheme with group velocity control (GVC)[J]. Science in China Series A:Mathematics, 2001, 44(9):1197-1204. [28] HE Z W, LI X L, LIANG X. Nonlinear spectral-like schemes for hybrid schemes[J]. Science China Physics:Mechanics and Astronomy, 2014, 57(4):753-763. [29] PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2):489-497. [30] FAUCONNIER D, DICK E. On the spectral and conservation properties of nonlinear discretization operators[J]. Journal of Computational Physics, 2011, 230(12):4488-4518. [31] SUN Z S, REN Y X, LARRICQ C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12):4616-4635. [32] LI X, LENG Y, HE Z. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6):560-577. [33] LI L, YU C, ZHE C, et al. Resolution-optimised nonlinear scheme for secondary derivatives[J]. International Journal of Computational Fluid Dynamics, 2016, 30(2):107-119. [34] JIA F, GAO Z, DON W S. A spectral study on the dissipation and dispersion of the WENO schemes[J]. Journal of Scientific Computing, 2015, 63(1):49-77. [35] HARTEN A. The artificial compression method for computation of shocks and contact discontinuities Ⅲ:Self-adjusting hybrid schemes[J]. Mathematics of Computation, 1978, 32(142):363-389. [36] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]. 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, 1981. |