[1] TORO E F.Riemann solvers and numerical methods for fluid dynamics[M]. 3rd ed. Berlin Heidelberg:Springer-Verlag,2009. [2] LIOU M S. Open problems in numerical fluxes:Proposed resolutions[C]. 20th AIAA Computational Fluid Dynamics Conference, Hawaii,2011. [3] LIOU M S. Unresolved problems by shock capturing:Taming the overheating problem[C]. 7th International Conference on Computational Fluid Dynamics,Hawaii,2012. [4] LIOU M S. Why is the overheating problem diffcult:The role of entropy[C]. 21st AIAA Computational Fluid Dynamics Conference, San Diego,2013. [5] LIOU M S. The root cause of the overheating problem[C]. 23rd AIAA Computational Fluid Dynamics Conference,Denver,2017. [6] CHENG J,SHU C W. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations[J]. Journal of Computational Physics,2007,227(2):1567-1596. [7] LIU W,CHENG J,SHU C W. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations[J]. Journal of Computational Physics,2009,228(23):8872-8891. [8] BOSCHERI W,DUMBSER M. A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D[J]. Journal of Computational Physics,2014,275(15):484-523. [9] SHEN Z J,XIE Y W,YAN W. Wall heating and adaptive heat conduction viscosity[J]. Chinese Journal of Computational Physics,2012,29(6):807-814. [10] HU X Y,KHOO B C. Kinetic energy fix for low internal energy flows[J]. Journal of Computational Physics,2003,193(1):243-259. [11] XU K,HU J S. Projection dynamics in Godunov-type schemes[J]. Journal of Computational Physics,1998,142(2):412-427. [12] VON NEUMANN J,RICHTMYER R D. A method for the numerical simulation of hydrodynamics shocks[J]. Journal of Applied Physics,1950,21(3):232-237. [13] ZHOU H B,XIONG J,LIU W T,et al. An artificial viscosity in Lagrangian hydrodynamics method[J]. Chinese Journal of Computational Physics,2010,27(6):829-832. [14] CHENG X H,NIE Y F,CAI L,et al. Entropy stable scheme based on moving meshes for hyperbolic conservation laws[J]. Chinese Journal of Computational Physics,2017,34(2):175-182. [15] 李德元,徐国荣,水鸿寿,等. 二维非定常流体力学数值方法[M]. 北京:科学出版社,1998. [16] XU X H,NI G X,JIANG S. An entropy fixed cell-centered Lagrangian scheme[J]. International Journal for Numerical Methods in Fluids,2013,72(10):1096-1115. [17] BRAEUNIG J P. Reducing the entropy production in a collocated Lagrange-Remap scheme[J]. Journal of Computational Physics,2016,314(1):127-144. [18] COCCHI J P,SAUREL R,LORAUD J C,et al. Some remarks about the resolution of high velocity flows near low densities[J]. Shock Waves,1998,8(2):119-125. [19] MAIRE P H,LOUBERE R,VACHAL P. Staggered Largrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme[J]. Communications in Computational Physics,2011,10(4):940-978. [20] CARAMANA E J,BURTON D E,SHASHKOV M J,et al. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J]. Journal of Computational Physics,1998,146(1):227-262. [21] DUKOWICZ J K. A general,non-iterative Riemann solver for Godunov's method[J]. Journal of Computational Physics,1985,61(1):119-137. [22] MAIRE P H,ABGRALL R,BREIL J,et al. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J]. Siam Journal on Scientific Computing,2007,29(4):1781-1824. [23] SEDOV L I. Similarity and dimensional methods in mechanics[M]. New York:Academic Press,1959. |