1 |
NOH W H . Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux[J]. Journal of Computational Physics, 1978, 72 (1): 78- 120.
|
2 |
EINFELDT B , MUNZ C D , ROE P L , et al. On Godunov-type methods near low density[J]. Journal of Computational Physics, 1991, 92 (2): 273- 295.
DOI
|
3 |
SHEN Z J , XIE Y W , YAN W . Wall heating and adaptive heat conduction viscosity[J]. Chinese Journal of Computational Physics, 2012, 29 (6): 807- 814.
|
4 |
LI X , SUN C , SHEN Z J . Numerical simulation of one-dimensional elastic-perfectly plastic flow and suppression of wall heating phenomenon[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 539- 550.
|
5 |
LIOU M S. Why is the overheating problem difficult: The role of entropy[C]. 21st AIAA Computational Fluid Dynamics Conference, 2013: 2013-2697.
|
6 |
LIOU M S. The root cause of the overheating problem[C]. 23rd AIAA Computational Fluid Dynamics Conference, 2017.
|
7 |
XU K , HU J S . Projection dynamics in Godunov-type schemes[J]. Journal of Computational Physics, 1998, 142 (2): 412- 427.
DOI
|
8 |
VON N , RICHTMYER R . A method for the numerical simulation of hydrodynamics shocks[J]. Journal of Applied Physics, 1950, 21 (3): 232- 237.
DOI
|
9 |
SUN C , LI X , SHEN Z J . A Godunov method with staggered Lagrangian discretization applicable to isentropic flows[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 529- 538.
|
10 |
MAIRE P H , LOUBERE R , VACHAL P . Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydro-dynamics scheme[J]. Communications in Computational Physics, 2011, 10 (4): 940- 978.
DOI
|
11 |
CHENG J , SHU C W . A high order ENO conservative Lagrangian type scheme for the compressible Euler equations[J]. Journal of Computational Physics, 2007, 227 (2): 1567- 1596.
DOI
|
12 |
BOSCHERI W , DUMBSER M . A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D[J]. Journal of Computational Physics, 2014, 275, 484- 523.
DOI
|
13 |
HU X Y , KHOO B C . Kinetic energy fix for low internal energy flows[J]. Journal of Computational Physics, 2003, 193 (1): 243- 259.
|
14 |
COCCHI J P , SAUREL R , LORAUD J C , et al. Some remarks about the resolution of high velocity flows near low densities[J]. Shock Waves, 1998, 8 (2): 119- 125.
DOI
|
15 |
BRAEUNIG J P . Reducing the entropy production in a collocated Lagrange-remap scheme[J]. Journal of Computational Physics, 2016, 314, 127- 144.
DOI
|
16 |
PAULIN C , BRAEUNIG J P , MOTTE R . Isentropic correction for collocated Lagrange-remap scheme[J]. Computers & Mathematics with Applications, 2019, 78 (2): 623- 642.
|
17 |
MAIRE P H , ABGRALL R , BREIL J , et al. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J]. SIAM Journal on Scientific Computing, 2007, 29 (4): 1781- 1824.
DOI
|
18 |
SEDOV L I . Similarity and dimensional methods in mechanics[M]. New York: Academic Press, 1959.
|