[1] WILKINS M L. Calculation of elastic-plastic flow[J]. Journal of Biological Chemistry, 1964, 280(13):12833-12839. [2] TRANGENSTEIN J A, COLELLA P. A higher-order Godunov method for modeling finite deformation in elastic-plastic solids[J]. Communications on Pure & Applied Mathematics, 2010, 44(1):41-100. [3] MILLER G H, COLELLA P. A high-order Eulerian Godunov method for elastic-plastic flow in solids[J]. Journal of Computational Physics, 2001, 167(1):131-176. [4] BURTON D E, CARNEY T C, MORGAN N R, et al. A cell-centered Lagrangian Godunov-like method for solid dynamics[J]. Computers & Fluids, 2013, 83:33-47. [5] KLUTH G, DESPRES B. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme[J]. Journal of Computational Physics, 2010, 229(24):9092-9118. [6] MAIRE P H, ABGRALL R, BREIL J, et al. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids[J]. Journal of Computational Physics, 2013, 235(Complete):626-665. [7] GAO S, LIU T G. 1D exact elastic-perfectly plastic solid Riemann solver and its multi-material application[J]. Advances in Applied Mathematics and Mechanics, 2017, 9(03):621-650. [8] CHENG J B, TORO E F, JIANG S, et al. A high-order cellcentered Lagrangian scheme for one-dimensional elastic-plastic problems[J]. Computers & Fluids, 2015, 122:136-152. [9] CHENG J B. Harten-Lax-van Leer-contact (HLLC) approximation Riemann solver with elastic waves for one-dimensional elastic-plastic problems[J]. Applied Mathematics and Mechanics, 2016, 37(11):1517-1538. [10] LIU L, CHENG J B. A multi-material HLLC Riemann solver with both elastic and plastic waves for 1D elastic-plastic flows[J]. Computers and Fluids, 2019, 192:104265. [11] WANG R L, LIN Z, WEN L, et al. Wall heating and Q&H method in arbitrary n-polygon Lagrange grids finite volume method[J]. Chinese Journal of Computational Physics, 2007, 24(4):407-412. [12] SHEN Z J, XIE Y W, YAN W. Wall heating and adaptive heat conduction viscosity[J]. Chinese Journal of Computational Physics, 2012, 29(6):807-814. [13] SHEN Z J, LV G X, SHEN L J. Riemann solver and artificial viscosity in SPH[J]. Mathematica Numerica Sinica, 2006, 28(4):433-448. [14] VONNEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks[J]. Journal of Applied Physics, 1950, 21(3):232-237. |