计算物理 ›› 2021, Vol. 38 ›› Issue (3): 257-268.DOI: 10.19596/j.cnki.1001-246x.8248
收稿日期:
2020-06-29
出版日期:
2021-05-25
发布日期:
2021-09-30
作者简介:
薛创, 副研究员, 从事辐射流体力学及流体不稳定性数值模拟研究, E-mail: xue_chuang@iapcm.ac.cn
基金资助:
Chuang XUE(), Xingdong LI, Wenjun SUN, Wenhua YE, Xianjue PENG
Received:
2020-06-29
Online:
2021-05-25
Published:
2021-09-30
摘要:
根据两介质五方程简化模型的基本假设,发展了适用于任意多种介质的体积分数方程。为了捕捉多介质界面,将HLLC-HLLCM混合型数值通量的计算格式推广应用于二维平面和柱几何的多介质复杂流动问题,在高阶精度的数据重构过程中采用斜率修正型人工压缩方法ACM。通过一维、二维多介质黎曼问题算例测试,结果表明:发展的计算格式能够较好地分辨接触间断和激波,间断附近物理量无振荡;对于添加了初始扰动的激波问题,能够有效抑制激波数值不稳定性;使用二维柱球SOD问题和接触间断型黎曼问题检验计算格式对多介质复杂流动问题的适应性。
中图分类号:
薛创, 李馨东, 孙文俊, 叶文华, 彭先觉. 多介质五方程简化模型及界面捕捉的人工压缩算法[J]. 计算物理, 2021, 38(3): 257-268.
Chuang XUE, Xingdong LI, Wenjun SUN, Wenhua YE, Xianjue PENG. A Multi-material Five-equation-reduced Model and Artificial Compression Method for Interface Capture[J]. Chinese Journal of Computational Physics, 2021, 38(3): 257-268.
图1 HLLC和HLLCM通量采用的间断状态和激波结构(a) HLLC间断状态; (b) HLLCM间断状态
Fig.1 Discontinuity states and wave structures of HLLC and HLLCM flux (a) discontinuity states for HLLC; (b) discontinuity states for HLLCM
图3 网格和计算方法对接触间断计算的影响(a) 两介质静态接触间断(MUSCL); (b) 两介质运动接触间断(MUSCL); (c) 两介质运动接触间断(PPM); (d) 两介质运动接触间断(WENO)
Fig.3 Influence of mesh number and numerical method on contact discontinuity calculation (a) static contact discontinuity calculated by MUSCL; (b) moving contact discontinuity calculated by MUSCL; (c) moving contact discontinuity calculated by PPM; (d) moving contact discontinuity calculated by WENO
图4 两个爆炸波相互作用后的密度和体积分数分布(a) 不同计算方法的结果; (b) 不同物理模型的结果
Fig.4 Profiles of density and volume fractions after two blast waves interaction (a) results of different schemes; (b) results of different models
图5 采用两种数值通量计算的密度分布(a) 采用HLLC-HLLCM通量的密度等值线; (b) 采用HLLC通量的密度等值线;(c) 采用HLLC-HLLCM通量的X方向密度分布; (d) 采用HLLC通量的X方向密度分布
Fig.5 Profile of density calculated by different numerical flux (a) density isolines calculated by HLLC-HLLCM flux; (b) density isolines calculated by HLLC flux; (c) profiles of density calculated by HLLC-HLLCM flux; (d) profiles of density calculated by HLLC flux
图6 采用MUSCL+ACM+Hybrid算法的柱球SOD问题的密度分布(a) 柱SOD问题的二维密度分布; (b) 球SOD问题的二维密度分布; (c) 柱SOD问题的一维密度分布; (d) 球SOD问题的一维密度分布
Fig.6 Profiles of density for cylindrical and spherical SOD problems with MUSCL+ACM+Hybrid scheme (a) 2D density contours for cylindrical SOD problem; (b) 2D density contours for spherical SOD problem; (c) 1D density profile for cylindrical SOD problem; (d) 1D density profile for spherical SOD problem
图7 采用MUSCL+HLL格式计算柱球SOD问题的密度分布(a) 柱SOD问题的二维密度分布; (b) 球SOD问题的二维密度分布; (c) 柱SOD问题的一维密度分布; (d) 球SOD问题的一维密度分布
Fig.7 Profiles of density for cylindrical and spherical SOD problems with MUSCL+HLL scheme (a) 2D density contours for cylindrical SOD problem; (b) 2D density contours for spherical SOD problem; (c) 1D density profile for cylindrical SOD problem; (d) 1D density profile for spherical SOD problem
图8 二维黎曼问题的密度分布和物质界面(a) 未采用ACM的密度等值线; (b) 采用ACM的密度等值线; (c) 未采用ACM的物质界面; (d) 采用ACM的物质界面
Fig.8 Density profile and material interfaces of 2D Riemann problems (a) density isolines without ACM; (b) density isolines with ACM; (c) four material interfaces without ACM; (d) four material interfaces with ACM
1 |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39, 201- 205.
DOI |
2 |
MILLER G H, PUCKETT E G. A high order Godunov method for multiple condensed phases[J]. Journal of Computational Physics, 1996, 128, 134- 164.
DOI |
3 |
MULDER W, OSHER S, SETHIAN J A. Computing interface motion in compressible gas dynamics[J]. Journal of Computational Physics, 1992, 100, 209- 228.
DOI |
4 |
蔚喜军, 尤迎玖. 流体界面不稳定性数值模拟中不同介质界面的处理方法[J]. 计算物理, 2001, 18 (1): 23- 26.
DOI |
5 |
ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids[J]. Journal of Computational Physics, 2002, 181, 577- 616.
DOI |
6 |
MURRONE A, GUILLARD H. A five equation reduced model for compressible two phase flow problems[J]. Journal of Computational Physics, 2005, 202, 664- 698.
DOI |
7 |
SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows[J]. Annual Review of Fluid Mechanics, 2018, 50, 105- 130.
DOI |
8 | HARTEN A. The artificial compression method for computation of shocks and contact discontinuities Ⅲ: Self-adjusting hybrid schemes[J]. Mathematics of Computation, 1978, 32, 363- 389. |
9 |
SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27, 1- 31.
DOI |
10 |
YANG H. An artificial compression method for ENO schemes: The slope modification method[J]. Journal of Computational Physics, 1990, 89, 125- 160.
DOI |
11 |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅱ[J]. Journal of Computational Physics, 1989, 83, 32- 78.
DOI |
12 |
JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems[J]. Journal of Computational Physics, 2006, 219, 715- 732.
DOI |
13 |
CORALIC V, COLONIUS T. Finite-volume WENO scheme for viscous compressible multicomponent flows[J]. Journal of Computational Physics, 2014, 274, 95- 121.
DOI |
14 |
DUMBSER M, MOSCHETTA J M, GRESSIER J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics, 2004, 197, 647- 670.
DOI |
15 |
KIMS D, LEE B J, LEE H J, et al. Robust HLLC Riemenn solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics, 2009, 228, 7634- 7642.
DOI |
16 |
SHEN Z J, YAN W, YUAN G W. A robust HLLC-type Riemann solver for strong shock[J]. Journal of Computational Physics, 2016, 309, 185- 206.
DOI |
17 | 任健, 沈智军, 闫伟, 等. 避免人工干预的流体力学Riemann解法器[J]. 计算物理, 2018, 35 (1): 1- 12. |
18 | 水鸿寿. 一维流体力学差分方法[M]. 北京: 国防工业出版社, 1998: 443- 499. |
19 |
COLELLA P, WOODWARD P R. The piecewise parabolic method (PPM) for gas dynamical simulations[J]. Journal of Computational Physics, 1984, 54, 174- 201.
DOI |
20 |
马东军, 孙德军, 尹协远. 高密度比多介质可压缩流动的PPM方法[J]. 计算物理, 2001, 18 (6): 517- 522.
DOI |
[1] | 陈露, 高明, 梁佳, 王东民, 赵玉刚, 章立新. 润湿梯度作用下液滴在倾斜表面向上运动的格子Boltzmann模拟[J]. 计算物理, 2021, 38(6): 672-682. |
[2] | 肖寒, 李春曦, 苏浩哲, 叶学民. 垂直排液过程不稳定性的数值模拟[J]. 计算物理, 2021, 38(6): 661-671. |
[3] | 许爱国, 宋家辉, 陈锋, 谢侃, 应阳君. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. |
[4] | 王敏, 申玉清, 陈震宇, 徐鹏. 随机多孔介质的蒙特卡罗重构与渗流特性模拟[J]. 计算物理, 2021, 38(5): 623-630. |
[5] | 杨柳, 高敬威, 郑元涵, 李晓梅, 张云帆. 基于LB方法的非均质砂质砾岩渗吸规律数值模拟[J]. 计算物理, 2021, 38(5): 534-542. |
[6] | 王俊捷, 寇继生, 蔡建超, 潘益鑫, 钟振. 基于Tolman长度的Lucas-Washburn渗吸模型改进及数值模拟[J]. 计算物理, 2021, 38(5): 521-533. |
[7] | 薛社生, 李守先. 正冲击波后固壁表面颗粒的上升运动[J]. 计算物理, 2021, 38(3): 280-288. |
[8] | 娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38(3): 289-300. |
[9] | 梁佳, 高明, 陈露, 王东民, 章立新. 液滴撞击不同湿润性固壁面上静止液滴的格子Boltzmann研究[J]. 计算物理, 2021, 38(3): 313-323. |
[10] | 邹兴, 陈松泽, 郭照立. 精细平衡气体动理学格式[J]. 计算物理, 2020, 37(6): 653-666. |
[11] | 王坚毅, 潘振海, 吴慧英. 微通道内椭球颗粒惯性聚焦行为数值研究[J]. 计算物理, 2020, 37(6): 677-686. |
[12] | 李馨东, 赵英奎, 胡宗民, 姜宗林. 基于第二粘性的Navier-Stokes方程组求解正激波结构[J]. 计算物理, 2020, 37(5): 505-513. |
[13] | 孙晨, 李肖, 沈智军. 适用于等熵流动的交错拉氏Godunov方法[J]. 计算物理, 2020, 37(5): 529-538. |
[14] | 李肖, 孙晨, 沈智军. 一维理想弹塑性流体的数值模拟及壁热现象的抑制[J]. 计算物理, 2020, 37(5): 539-550. |
[15] | 朱俏俐, 张文欢. 带外力项的iDdQ(q-1)多松弛格子Boltzmann模型[J]. 计算物理, 2020, 37(5): 551-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发