计算物理 ›› 2021, Vol. 38 ›› Issue (5): 623-630.DOI: 10.19596/j.cnki.1001-246x.8315
所属专题: 多孔介质毛细动力学研究
• 研究论文 • 上一篇
收稿日期:
2020-12-07
出版日期:
2021-09-25
发布日期:
2022-03-24
通讯作者:
徐鹏
作者简介:
王敏(1996-),硕士研究生,研究方向为多孔介质重构与模拟
基金资助:
Min WANG, Yuqing SHEN, Zhenyu CHEN, Peng XU()
Received:
2020-12-07
Online:
2021-09-25
Published:
2022-03-24
Contact:
Peng XU
摘要:
根据多孔介质微观结构的分形尺度标度特征,采用蒙特卡罗方法分别重构随机多孔介质的微观颗粒和孔隙结构,并基于分形毛管束模型研究多尺度多孔介质的气体渗流特性,建立多孔介质微观结构和宏观渗流特性的定量关系。结果表明:分形蒙特卡罗重构的多孔介质微细结构接近真实介质结构,气体渗流特性的计算结果与格子玻尔兹曼模拟数据较为吻合; 多孔介质气体渗透率随着克努森数的增加而增大,孔隙分形维数对于气体渗流的微尺度效应具有显著影响,而迂曲度分形维数对于表观渗透率和固有渗透率的比值影响可以忽略。提出的分形蒙特卡罗方法具有收敛速度快且计算误差与维数无关的优点,有利于深入理解多尺度多孔介质的渗流机理。
中图分类号:
王敏, 申玉清, 陈震宇, 徐鹏. 随机多孔介质的蒙特卡罗重构与渗流特性模拟[J]. 计算物理, 2021, 38(5): 623-630.
Min WANG, Yuqing SHEN, Zhenyu CHEN, Peng XU. Reconstruction and Seepage Simulation of Random Porous Media with Monte Carlo Method[J]. Chinese Journal of Computational Physics, 2021, 38(5): 623-630.
图1 多孔介质颗粒相二维和三维重构 (ε=0.1,黑色和白色分别表示颗粒和孔隙。)
Fig.1 Two- and three-dimensional reconstruction of solid phase in porous media (ε=0.1, black and white color represent solid and pore phases, respectively.)
图2 多孔介质孔隙相二维和三维重构 (ϕ=0.1,白色和黑色分别表示孔隙和固体。)
Fig.2 Two- and three-dimensional reconstruction of pore phase in porous media (ϕ=0.1, black and white color represent solid and pore phases, respectively.)
图5 孔隙分形维数对于表观渗透率和固有渗透率比值的影响(a) ϕ=0.20, Dt=1.10; (b) λmin, p/λmax, p=0.01, Dt=1.10; (c) ϕ=0.20, Dt=1.10, Kn=1
Fig.5 Effect of pore fractal dimension on the ratio of apparent gas permeability to intrinsic permeability (a) ϕ=0.20, Dt=1.10; (b) λmin, p/λmax, p=0.01, Dt=1.10; (c) ϕ=0.20, Dt=1.10, Kn=1
1 | YU B M, XU P, ZOU M, et al. Transport physics in fractal porous media[M]. Beijing: Science Press, 2014. |
2 | XU P, SASMITO A P, MUJUMDAR A S. Heat and mass transfer in drying of porous media[M]. Boca Raton: Taylor & Francis, 2019. |
3 | WANG B, NING Z. Research on the reconstruction method of the micro-model of porous medium[J]. Reservoir Evaluation and Development, 2014, 2 (2): 45- 49. |
4 | HØYER A-S, VIGNOLI G, HANSEN T M, et al. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies[J]. Hydrology and Earth System Sciences Discussions, 2017, 21 (12): 1- 29. |
5 |
LU D, ZHANG T, YANG J, et al. A reconstruction method of porous media integrating soft data with hard data[J]. Chinese Science Bulletin, 2009, 54 (8): 1071- 1079.
DOI |
6 |
BAKKE S, ØREN P E. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks[J]. SPE Journal, 1997, 2 (2): 136- 149.
DOI |
7 | FENG Q, ZHAO Y, WANG S, et al. Pore-scale oil-water two-phase flow simulation based on phase field method[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 439- 447. |
8 |
ROBERTS A P, TORQUATO S. Chord-distribution functions of three-dimensional random media: Approximate first passage times of Gaussian processes[J]. Physical Review E, 1999, 59 (5): 4953- 4963.
DOI |
9 |
TALUKDAR M S, TORSAETER O, IOANOANNIDIS M A. Stochastic reconstruction of particulate media from two-dimensional images[J]. Journal of Colloid and Interface Science, 2002, 248 (2): 419- 428.
DOI |
10 |
OKABE H, BLUNT M J. Prediction of permeability for porous media reconstructed using multiple-point statistics[J]. Physical Review E, 2004, 70 (6): 066135.
DOI |
11 | CHEN J, ZHANG T, DU Y. Reconstruction of porous media using adaptive deep transfer learning[J]. Journal of Computer Applications, 2020, 40 (4): 1231- 1236. |
12 |
YANG Y, YAO J, WANG C, et al. New pore space characterization method of shale matrix formation by considering organic and inorganic pores[J]. Journal of Natural Gas Science and Engineering, 2015, 27, 496- 503.
DOI |
13 |
YANG Y F, LIU Z H, YAO J, et al. Pore space characterization method of shale matrix formation based on superposed digital rock and pore-network model[J]. Scientia Sinica Technologica, 2018, 48 (05): 488- 498.
DOI |
14 |
YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61 (5): 050801.
DOI |
15 | CAI J, ZHANG L, WEI W. Modelling of flow and transport in fractal porous media[M]. Amsterdam: Elsevier, 2020. |
16 |
QIU S, YANG M, XU P, et al. A new fractal model for porous media based on low-field nuclear magnetic resonance[J]. Journal of Hydrology, 2020, 586, 124890.
DOI |
17 |
JU Y, ZHENG J T, EPSTEIN M, et al. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279, 212- 226.
DOI |
18 |
KIM J, CHOI S. A fractal-based approach for reconstructing pore structures of GGBFS-blended cement pastes[J]. Construction and Building Materials, 2020, 265, 120350.
DOI |
19 |
HUANG Y P, YAO F, ZHOU B. Numerical study on permeability characteristics of fractal porous media[J]. Chinese Physics B, 2020, 29 (5): 054701.
DOI |
20 | CHENG J, DING R, LIU Y. Simulation on percolation of fractal aggregations[J]. Chinese Journal of Computational Physics, 2007, 24 (1): 83- 89. |
21 | ZHANG J, HUANG S, CHENG L. Monte Carlo calculation of stable porductivity of fractured directional wells in natural fracture reservoirs[J]. Chinese Journal of Computational Physics, 2014, 31 (5): 567- 572. |
22 | MO K, SU J. Diploar interaction in magnetic nanoparticles systems: A Monte Carlo study[J]. Chinese Journal of Computational Physics, 2019, 36 (3): 335- 341. |
23 |
MANWART C, HILFER R. Reconstruction of random media using Monte Carlo methods[J]. Physical Review E, 1999, 59 (5): 5596- 5599.
DOI |
24 |
WU W, JIANG F-M, CHEN Z, et al. 3D Monte Carlo reconstruction and characterization of LiCoO2 cathode[J]. Journal of Inorganic Materials, 2013, 28 (11): 1243- 1247.
DOI |
25 | MANDELBROT B B. The fractal geometry of nature[M]. New York: Freeman, 1982. |
26 | YU B M, CHENG P. A fractal model for permeability of bi-dispersed porous media[J]. International Journal of Heat & Mass Transfer, 2002, 45 (14): 2983- 2993. |
27 | FLORENCE F A, RUSHING J, NEWSHAM K E, et al. Improved permeability prediction relations for low permeability sands[C]. Rocky Mountain Oil & Gas Technology Symposium, Denver, USA, 2007. |
28 |
CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82 (2): 375- 384.
DOI |
29 |
LI C, XU P, QIU S, et al. The gas effective permeability of porous media with Klinkenberg effect[J]. Journal of Natural Gas Science and Engineering, 2016, 34, 534- 540.
DOI |
30 |
WANG H, CHEN L, QU Z, et al. Modeling of multi-scale transport phenomena in shale gas production—A critical review[J]. Applied Energy, 2020, 262, 114575.
DOI |
31 | ARTHUR K. Investigation of gas flow through fractal structure[D]. Glasgow: University of Strathclyde Engineering, 2018. |
[1] | 郑素佩, 建芒芒, 封建湖, 翟梦情. 保号WENO-AO型中心迎风格式[J]. 计算物理, 2022, 39(6): 677-686. |
[2] | 刘嘉鑫, 郑林, 张贝豪. 多孔介质方腔内双扩散自然对流熵产的格子Boltzmann模拟[J]. 计算物理, 2022, 39(5): 549-563. |
[3] | 林品亮, 冯欢欢, 董宇红. 具有多孔介质覆面层的柱体绕流流场分析[J]. 计算物理, 2022, 39(4): 418-426. |
[4] | 付韬, 邬龙, 李晨光. 基于生成函数方法的现实网络座键渗流建模[J]. 计算物理, 2022, 39(2): 212-222. |
[5] | 蔡建超. 多孔介质自发渗吸关键问题与思考[J]. 计算物理, 2021, 38(5): 505-512. |
[6] | 郑江韬, 贾宁洪, 胡慧芳, 杨勇, 鞠杨, 王沫然. 分支通道内液-液自发渗吸规律研究[J]. 计算物理, 2021, 38(5): 543-554. |
[7] | 魏祥祥, 冯其红, 张先敏, 黄迎松, 刘丽杰. 基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究[J]. 计算物理, 2021, 38(5): 573-584. |
[8] | 杨波, 衷斌, 徐琪, 成立, 潘流俊, 沈华韵. (α, n)反应中子产额与能谱计算方法[J]. 计算物理, 2021, 38(4): 393-400. |
[9] | 娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38(3): 289-300. |
[10] | 柴国亮, 苏军伟, 王乐. 一种保持二阶精度的反距离加权空间插值算法[J]. 计算物理, 2020, 37(4): 393-402. |
[11] | 万启坤, 罗松, 尚文强, 张莹, 刘昊天, 朱宝杰. 不连续冷源布局多孔介质内热流耦合LBM数值模拟[J]. 计算物理, 2020, 37(4): 431-438. |
[12] | 冯其红, 赵蕴昌, 王森, 张以根, 孙业恒, 史树彬. 基于相场方法的孔隙尺度油水两相流体流动模拟[J]. 计算物理, 2020, 37(4): 439-447. |
[13] | 邓楚楚, 张鑫源, 陈水源, 吴宇晗, 叶晴莹, 黄志高. 小缺陷铁纳米环的磁特性[J]. 计算物理, 2020, 37(4): 473-478. |
[14] | 任娟, 张宁超, 刘萍萍. 碳气凝胶储氢性能的理论研究[J]. 计算物理, 2019, 36(6): 749-756. |
[15] | 曾伟, 陈松泽, 郭照立. 气体动理学格式模拟多孔介质流动的可行性[J]. 计算物理, 2019, 36(5): 551-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发