计算物理 ›› 2021, Vol. 38 ›› Issue (5): 521-533.DOI: 10.19596/j.cnki.1001-246x.8347
所属专题: 多孔介质毛细动力学研究
王俊捷1(), 寇继生1, 蔡建超2, 潘益鑫1, 钟振1,*(
)
收稿日期:
2021-02-28
出版日期:
2021-09-25
发布日期:
2022-03-24
通讯作者:
钟振
作者简介:
王俊捷(1997-), 男, 硕士研究生, 主要从事两相流渗吸模型及其数值方法研究, E-mail: JunjieWangmail@163.com
基金资助:
Junjie WANG1(), Jisheng KOU1, Jianchao CAI2, Yixin PAN1, Zhen ZHONG1,*(
)
Received:
2021-02-28
Online:
2021-09-25
Published:
2022-03-24
Contact:
Zhen ZHONG
摘要:
经典的Lucas-Washburn(L-W)渗吸模型用Young-Laplace方程计算毛管压力, 但该方程在管径细小情形得出的毛管压力值与真实值存在较大偏差。本文运用Tolman长度改进Young-Laplace方程, 提出一种改进的L-W渗吸模型, 并将等截面圆管扩展至任意变化截面圆管, 得到变截面圆管中润湿流体注入长度随时间变化的数学模型。该模型为二阶非线性常微分方程, 无法求出解析解, 为此提出一种数值解法。选取截面变化的毛细管道, 通过数值模拟计算出润湿液体注入长度与时间的对应关系, 对Tolman长度的改进效果进行检验和分析。结果表明: 在研究范围内Tolman长度对L-W渗吸模型的改进效果表现出毛细管道半径越小, 效果越明显的规律。圆管局部缩小能改变渗吸水运动状态, 依次呈现出三种运动模式; 圆管局部扩大会缓慢改变渗吸水运动状态, 只呈现单一运动模式。
中图分类号:
王俊捷, 寇继生, 蔡建超, 潘益鑫, 钟振. 基于Tolman长度的Lucas-Washburn渗吸模型改进及数值模拟[J]. 计算物理, 2021, 38(5): 521-533.
Junjie WANG, Jisheng KOU, Jianchao CAI, Yixin PAN, Zhen ZHONG. Tolman Length-based Modified Lucas-Washburn Capillary-driven Model and Numerical Simulation[J]. Chinese Journal of Computational Physics, 2021, 38(5): 521-533.
管径/m | 到达平衡位置时间/s | 平衡位置高度/(10-5 m) |
0.000 07 | 18.13 | 1 323 |
0.000 08 | 13.35 | 1 158 |
0.000 09 | 7.85 | 1 029 |
0.000 1 | 6.534 | 926.1 |
0.000 5 | 0.043 | 232.6 |
0.001 | 0.031 | 133.9 |
0.002 | 0.023 | 69.03 |
0.003 | 0.019 | 46.22 |
0.004 | 0.016 | 34.71 |
0.005 | 0.014 | 27.78 |
0.006 | 0.013 | 23.16 |
0.007 | 0.012 | 19.85 |
0.008 | 0.011 | 17.37 |
0.009 | 0.011 | 15.44 |
0.01 | 0.01 | 13.9 |
0.05 | 0.005 | 2.78 |
0.1 | 0.004 | 1.39 |
0.5 | 0.001 4 | 0.277 7 |
1 | 0.001 1 | 0.138 4 |
表1 不同管径下的平衡时间及平衡位置高度
Table 1 Equilibrium time and height at various tube radii
管径/m | 到达平衡位置时间/s | 平衡位置高度/(10-5 m) |
0.000 07 | 18.13 | 1 323 |
0.000 08 | 13.35 | 1 158 |
0.000 09 | 7.85 | 1 029 |
0.000 1 | 6.534 | 926.1 |
0.000 5 | 0.043 | 232.6 |
0.001 | 0.031 | 133.9 |
0.002 | 0.023 | 69.03 |
0.003 | 0.019 | 46.22 |
0.004 | 0.016 | 34.71 |
0.005 | 0.014 | 27.78 |
0.006 | 0.013 | 23.16 |
0.007 | 0.012 | 19.85 |
0.008 | 0.011 | 17.37 |
0.009 | 0.011 | 15.44 |
0.01 | 0.01 | 13.9 |
0.05 | 0.005 | 2.78 |
0.1 | 0.004 | 1.39 |
0.5 | 0.001 4 | 0.277 7 |
1 | 0.001 1 | 0.138 4 |
管径/m | 到达平衡位置时间/s | 平衡位置高度/(10-5 m) |
0.000 07 | 18.46 | 1 324 |
0.000 08 | 10.76 | 1 158 |
0.000 09 | 9.19 | 1 030 |
0.000 1 | 7.315 | 926.7 |
0.000 5 | 0.043 | 232.6 |
0.001 | 0.031 | 133.9 |
0.002 | 0.023 | 69.03 |
0.003 | 0.019 | 46.22 |
0.004 | 0.016 | 34.71 |
0.005 | 0.014 | 27.78 |
0.006 | 0.013 | 23.16 |
0.007 | 0.012 | 19.85 |
0.008 | 0.011 | 17.37 |
0.009 | 0.011 | 15.44 |
0.01 | 0.01 | 13.9 |
0.05 | 0.005 | 2.78 |
0.1 | 0.003 1 | 1.39 |
0.5 | 0.001 4 | 0.277 7 |
1 | 0.001 1 | 0.138 4 |
表2 未经Tolman长度改进时不同管径下的平衡时间及平衡位置高度
Table 2 Equilibrium time and height at various tube radii without Tolman length
管径/m | 到达平衡位置时间/s | 平衡位置高度/(10-5 m) |
0.000 07 | 18.46 | 1 324 |
0.000 08 | 10.76 | 1 158 |
0.000 09 | 9.19 | 1 030 |
0.000 1 | 7.315 | 926.7 |
0.000 5 | 0.043 | 232.6 |
0.001 | 0.031 | 133.9 |
0.002 | 0.023 | 69.03 |
0.003 | 0.019 | 46.22 |
0.004 | 0.016 | 34.71 |
0.005 | 0.014 | 27.78 |
0.006 | 0.013 | 23.16 |
0.007 | 0.012 | 19.85 |
0.008 | 0.011 | 17.37 |
0.009 | 0.011 | 15.44 |
0.01 | 0.01 | 13.9 |
0.05 | 0.005 | 2.78 |
0.1 | 0.003 1 | 1.39 |
0.5 | 0.001 4 | 0.277 7 |
1 | 0.001 1 | 0.138 4 |
1 | TENG J D, ZHONG Y, ZHANG S, et al. A mathematic model for the soil freezing characteristic curve: The roles of adsorption and capillarity[J]. Cold Regions Science and Technology, 2020, 181, 103178. |
2 |
LUCAS V R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten[J]. Kolloid-Zeitschrift, 1918, 23 (1): 15- 22.
DOI |
3 |
WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17 (3): 273- 283.
DOI |
4 | 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展[J]. 力学进展, 2012, 42 (6): 735- 754. |
5 |
WANG P, ZHANG Q E, WANG M H, et al. Atomistic insights into cesium chloride solution transport through the ultra-confined calcium-silicate-hydrate channel[J]. Physical Chemistry Chemical Physics, 2019, 21 (22): 11892- 11902.
DOI |
6 |
YU T, ZHOU J J, DOI M. Capillary imbibition in a square tube[J]. Soft Matter, 2018, 14 (45): 9263- 9270.
DOI |
7 |
CAI J C, YU B M, MEI M F, et al. Capillary rise in a single tortuous capillary[J]. Chinese Physics Letters, 2010, 27 (5): 054701.
DOI |
8 |
BAO J W, WANG L C. Capillary imbibition of water in discrete planar cracks[J]. Construction and Building Materials, 2017, 146, 381- 392.
DOI |
9 | FENG Q H, ZHAO Y C, WANG S, et al. Pore-scale oil-water two-phase flow simulation based on phase field method[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 439- 447. |
10 |
CITO S, AHN Y C, PALLARES J, et al. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography[J]. Microfluidics and Nanofluidics, 2012, 13 (2): 227- 237.
DOI |
11 |
崔阳权, 黄印, 高明轩, 等. 水在玻璃毛细管中的运动规律研究[J]. 科技创新导报, 2015, 12 (23): 44- 45+48.
DOI |
12 | 吕秋丽, 杨海华. 不同土质孔隙结构特点及其毛细水上升规律分析[J]. 能源与环保, 2019, 41 (5): 102- 106. |
13 | 章求才, 田亚坤, 张志军, 等. 温度和气压对某金属矿山尾矿坝中毛细水上升规律的影响[J]. 中国有色金属学报, 2017, 27 (05): 1016- 1022. |
14 | 刘婷, 姜春露, 郭燕, 等. 粉煤灰含量对砂土中毛细水上升规律的影响[J]. 煤炭学报, 2016, 41 (11): 2836- 2840. |
15 |
KOU J S, SUN S Y. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility[J]. Journal of Computational Physics, 2016, 318, 349- 372.
DOI |
16 | 贺永金. 汽-液界面上纳米颗粒润湿密度泛函理论研究[D]. 北京: 北京化工大学, 2009. |
17 |
WANG J J, ZHU X Y, PAN Y X, et al. Water uptake in parallel fractures[J]. Capillarity, 2021, 4 (1): 1- 12.
DOI |
18 |
SHEN A Q, LIU Y K, ALI FAROUQ S M. A model of spontaneous flow driven by capillary pressure in nanoporous media[J]. Capillarity, 2020, 3 (1): 1- 7.
DOI |
19 | QIANG H F, CHEN F Z, GAO W R. Smoothed particle hydrodynamics method with modified surface tension and its implementation[J]. Chinese Journal of Computational Physics, 2011, 28 (3): 375- 384. |
20 |
TOLMAN R C. The effect of droplet size on surface tension[J]. Journal of Chemical Physics, 1949, 17 (3): 333- 337.
DOI |
21 |
REHNER P, AASEN A, WILHELMSEN I. Tolman lengths and rigidity constants from free-energy functionals — General expressions and comparison of theories[J]. Journal of Chemical Physics, 2019, 151 (24): 244710.
DOI |
22 |
MALEK S M A, POOLE P H, SAIKA-VOIVOD I. Surface tension of supercooled water nanodroplets from computer simulations[J]. Journal of Chemical Physics, 2019, 150 (23): 234507.
DOI |
23 |
REHNER P, GROSS J. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory[J]. Journal of Chemical Physics, 2018, 148 (16): 164703.
DOI |
24 |
REKHVIASHVILI S S. Size dependence of the surface tension of a small droplet under the assumption of a constant Tolman length: Critical analysis[J]. Colloid Journal, 2020, 82 (3): 342- 345.
DOI |
25 |
BHATT P A, MISHRA S, JHA P K, et al. Size-dependent surface energy and Tolman length of TiO2 and SnO2 nanoparticles[J]. Physica B: Condensed Matter, 2015, 461, 101- 105.
DOI |
26 | 张茂林, 梅海燕, 李闽, 等. Young-Laplace方程推导的新方法及应用[J]. 西南石油学院学报, 2002, 24 (05): 43- 45+2. |
27 |
BUFF F P. The spherical interface I. Thermodynamic[J]. Journal of Chemical Physics, 1951, 19 (12): 1591- 1594.
DOI |
28 | QI Z H, ZHANG W F, JIA M. A method for velocity calculation of nanoflows[J]. Chinese Journal of Computational Physics, 2012, 29 (4): 503- 510. |
[1] | 刘利, 牛胜利, 朱金辉, 左应红, 谢红刚, 商鹏. 临近空间核爆炸碎片云运动的数值模拟[J]. 计算物理, 2022, 39(5): 521-528. |
[2] | 吴丽媛, 张素英. 自旋相关光晶格中玻色-爱因斯坦凝聚体的基态[J]. 计算物理, 2022, 39(5): 617-623. |
[3] | 杜旭林, 程林松, 牛烺昱, 陈玉明, 曹仁义, 谢永红. 考虑水力压裂缝和天然裂缝动态闭合的三维离散缝网数值模拟[J]. 计算物理, 2022, 39(4): 453-464. |
[4] | 孙梦营, 马明, 过海龙, 姚孟君, 徐猛, 张莹. 零重力点热源马兰戈尼FTM数值模拟[J]. 计算物理, 2022, 39(2): 191-200. |
[5] | 赵腾飞, 张华. 气泡碰撞过程中形变及破碎现象分析[J]. 计算物理, 2022, 39(1): 41-52. |
[6] | 关富荣, 李成乾, 邓敏艺. 激发介质相对不应态对螺旋波动力学行为的影响[J]. 计算物理, 2021, 38(6): 749-756. |
[7] | 杨展康, 牛奕. 温度及围护通风对独头巷道氡浓度分布的影响[J]. 计算物理, 2021, 38(4): 456-464. |
[8] | 胡少亮, 徐小文, 郑宇腾, 赵振国, 王卫杰, 徐然, 安恒斌, 莫则尧. 系统级封装应用中时谐Maxwell方程大规模计算的求解算法:现状与挑战[J]. 计算物理, 2021, 38(2): 131-145. |
[9] | 陈皓, 蔡汝铭. 平流层飞艇气动外形优化设计:螺旋桨的影响[J]. 计算物理, 2020, 37(5): 562-570. |
[10] | 王子墨, 李凌. 超短激光打孔中快速相变的格子玻尔兹曼模拟[J]. 计算物理, 2020, 37(3): 299-306. |
[11] | 王智, 邹高域, 宫敬, 白剑锋, 翟博文. 一维双流体模型的压力修正算法[J]. 计算物理, 2019, 36(4): 413-420. |
[12] | 张珑慧, 由长福. 基于有限体积虚拟区域方法的两相流动直接模拟[J]. 计算物理, 2019, 36(3): 291-297. |
[13] | 徐丞君, 徐胜利. SPH二阶粒子近似光滑函数的充分条件及数值验证[J]. 计算物理, 2019, 36(1): 25-38. |
[14] | 王烨, 王艺, 胡文婷, 王良璧. POD方法在扁管管翅式换热器研究中的应用[J]. 计算物理, 2018, 35(5): 587-596. |
[15] | 孙婷婷, 韩赛赛, 许明田. 求解对流-扩散-反应问题的改进有限积分法[J]. 计算物理, 2018, 35(3): 269-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发