计算物理 ›› 2021, Vol. 38 ›› Issue (6): 749-756.DOI: 10.19596/j.cnki.1001-246x.8321
• 研究论文 • 上一篇
收稿日期:
2020-12-17
出版日期:
2021-11-25
发布日期:
2022-04-27
通讯作者:
邓敏艺
作者简介:
关富荣(1994-), 男, 广东台山, 硕士研究生, 主要研究螺旋波动力学行为, E-mail: gxnuguanfurong@163.com
基金资助:
Furong GUAN(), Chengqian LI, Minyi DENG(
)
Received:
2020-12-17
Online:
2021-11-25
Published:
2022-04-27
Contact:
Minyi DENG
摘要:
采用元胞自动机模型研究激发介质相对不应态对螺旋波动力学行为的影响。数值模拟表明:元胞激发阈值存在一临界区间,该区间的螺旋波周期会突然增加,并存在一最大周期,在合适的系统尺寸和状态数下,螺旋波周期不再受相对不应态的影响而只取决于系统的激发阈值;相对不应态导致螺旋波“Z”型漫游、小范围无规律漫游、花瓣状漫游、锯齿状漫游、风车状漫游等复杂的波头运动。观察到稳定螺旋波、漫游螺旋波和螺旋波消失,并对产生这些现象的机制作简要的解释。
中图分类号:
关富荣, 李成乾, 邓敏艺. 激发介质相对不应态对螺旋波动力学行为的影响[J]. 计算物理, 2021, 38(6): 749-756.
Furong GUAN, Chengqian LI, Minyi DENG. Spiral Wave Dynamics of Excited Medium: Effect of Relative Refractory[J]. Chinese Journal of Computational Physics, 2021, 38(6): 749-756.
图1 相对不应态对螺旋波周期的影响(a)~(c)分别是截断行波后1000时步、2000时步、3000时步的螺旋波斑图(Ra=12, Rr=3, Thq=30); (d)T随Thq的变化(Tha=76)
Fig.1 Effect of relative refractory states on the period of spiral wave (a)-(c) are the spiral wave patterns at 1000, 2000, and 3000 time steps after truncating the traveling wave (Ra=12, Rr=3, Thq=30); (d) Change of period T with time(Tha=76)
图2 不同m, n下T随Thq的变化(Tha=76) (a)m=100, n=10; (b)m=300, n=15; (c)m=300, n=25; (d)m=400, n=25
Fig.2 Spiral wave period T varies with Thq under different m and n (Tha=76) (a)m=100, n=10; (b)m=300, n=15; (c)m=300, n=25; (d)m=400, n=25
图3 相对不应态对螺旋波波头轨迹的影响(Ra=25 - Rr, Thq=30, Tha=76) (a)Rr=0; (b)Rr=4; (c)Rr=9; (d)Rr=13; (e)Rr=14; (f)Rr=16; (g)Rr=20; (h)Rr=21
Fig.3 Effect of the relative refractory state on the trajectory of the spiral wave tip (Ra=25 - Rr, Thq=30, Tha=76) (a) Rr=0; (b)Rr=4; (c)Rr=9; (d)Rr=13; (e)Rr=14; (f)Rr=16; (g)Rr=20; (h)Rr=21
图4 不同(Rr, Ra)下的螺旋波演化结果(Thq=30,Tha=76) (□代表稳定螺旋波; ○代表螺旋波作周期漫游; ▲代表螺旋波作准周期漫游螺旋波; ▼代表螺旋波作非周期漫游; ☆代表螺旋波消失; ◇代表螺旋波破碎。)
Fig.4 Evolution behavior of spiral waves under different (Rr, Ra) (Thq=30, Tha=76) (□, ○, ▲, ▼, ☆, ◇ represent stable spirals, periodic meandering spirals, quasiperiodic meandering spirals, aperiodic meandering spirals, disappearance and breakup of spiral waves, respectively.)
图5 相对不应态导致的螺旋波消失(Ra=10,Rr=15,Thq=30,Tha=76),(a)~(d)分别为t=10 000、11 909、11 912、11 970时的元胞状态灰度图,元胞状态值越大,对应的点就越明亮;(e)为(20, 20)处元胞的状态随时间的变化
Fig.5 Disappearance of spiral wave caused by relative refractory state (Ra=10, Rr=15, Thq=30, Tha=76) (a)-(d) are grayscale images of cell state at t=10 000, 11 909, 11 912, and 11 970. The larger the cellular state value is, the brighter the corresponding point will be; (e)Change of cellular state with time at (20, 20)
1 |
ZYKOV V S, BODENSCHATZ E. Wave propagation in inhomogeneous excitable media[J]. Annual Review of Condensed Matter Physics, 2018, 9 (1): 435- 461.
DOI |
2 |
WANG Z, ROSTAMI Z, JAFARI S, et al. Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media[J]. Chaos, Solitons and Fractals, 2019, 128, 229- 233.
DOI |
3 | 张学良, 谭惠丽, 唐国宁, 等. 基于心脏腔式结构的心电图元胞自动机建模[J]. 物理学报, 2017, 66 (20): 24- 32. |
4 |
HUANG X Y, XU W F, LIANG J M, et al. Spiral wave dynamics in neocortex[J]. Neuron, 2010, 68 (5): 978- 990.
DOI |
5 |
FENTON F H, CHERRY E M, HASTINGS H M, et al. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity[J]. Chaos, 2002, 12 (3): 852- 892.
DOI |
6 |
HE D H, HU G, ZHAN M, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections[J]. Physical Review E, 2002, 65 (5): 055204.
DOI |
7 | 袁国勇, 张焕, 王光瑞. 多可激性障碍下的螺旋波动力学[J]. 物理学报, 2013, 62 (16): 53- 62. |
8 | 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波[J]. 物理学报, 2013, 62 (8): 308- 316. |
9 |
LIU G Q, YING H P, LUO H L, et al. Suppression of spiral breakup in excitable media by local periodic forcing[J]. International Journal of Bifurcation and Chaos, 2016, 26 (14): 1650236.
DOI |
10 |
CHEN J X, ZHANG H, QIAO L Y, et al. Interaction of excitable waves emitted from two defects by pulsed electric fields[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 202- 209.
DOI |
11 | MA J, WU N J, YING H P, et al. A local phase control of spiral and spatiotemporal chaos[J]. Chinese Journal of Computational Physics, 2006, 23 (2): 243- 248. |
12 | ZHONG M, TANG G N. Suppression of spiral waves and spatiotemporal chaos in cardiac tissues with controll of calcium and potassium ionic currents[J]. Chinese Journal of Computational Physics, 2011, 28 (1): 119- 124. |
13 | ZYKOV V S. Spiral wave initiation in excitable media[J]. Philosophical Transactions of the Royal Society, 2018, 376 (2135): 20170376. |
14 |
ROMERO L, TRÉNOR B, ALONSO J M, et al. The relative role of refractoriness and source-sink relationship in reentry generation during simulated acute ischemia[J]. Annals of Biomedical Engineering, 2009, 37 (8): 1560- 1571.
DOI |
15 |
MAURER K, HOPF H C, LOWITZSCH K. Hypokalemia shortens relative refractory period of peripheral sensory nerves in man[J]. Journal of Neurology, 1977, 216 (1): 67- 71.
DOI |
16 |
TACKMANN W, LEHMANN H J. Relative refractory period of median nerve sensory fibres in the carpal tunnel syndrome[J]. European Neurology, 1974, 12 (5-6): 309- 316.
DOI |
17 | ALDERSON M K, PETAJAN J H. Relative refractory period: A measure to detect early neuropathy in alcoholics[J]. Muscle & Nerve, 1987, 10 (4): 323- 328. |
18 |
MURAKAWA Y, YAMASHITA T, AJIKI K, et al. Effects of a class iii antiarrhythmic drug and biphasic shocks on the postdefibrillation refractory period of relatively refractory myocardium[J]. Journal of Cardiovascular Electrophysiology, 1996, 7 (7): 603- 611.
DOI |
19 |
WOLFRAM S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics, 1983, 55 (3): 601- 644.
DOI |
20 | CHEN X Q, DENG M Y, TANG G N, et al. Effect of conduction delay on dynamics of spiral waves[J]. Chinese Journal of Computational Physics, 2013, 30 (4): 620- 626. |
21 |
DENG M Y, CHEN X Q, TANG G N. The effect of cellular aging on the dynamics of spiral waves[J]. Chinese Physics B, 2014, 23 (12): 120503.
DOI |
22 | DENG M Y, DAI J Y, ZHANG X L. A cellular automaton model for the ventricular myocardium considering the layer structure[J]. Chinese Physics B, 2015, 24 (9): 142- 146. |
23 | ZHANG X L, TAN H L, TANG G N, et al. Mechanical deformation of myocardial tissue with cellular automaton[J]. Chinese Journal of Computational Physics, 2018, 35 (3): 294- 302. |
24 |
FAST V G, EFIMOV I R. Stability of vortex rotation in an excitable cellular medium[J]. Physica D, 1991, 49 (1-2): 75- 81.
DOI |
25 |
BIKTASHEV V N, HOLDEN A V. Deterministic Brownian motion in the hypermeander of spiral waves[J]. Physica D, 1998, 116 (3-4): 342- 354.
DOI |
26 |
CHRISTOPH J, CHEBBOK M, RICHTER C, et al. Electromechanical vortex filaments during cardiac fibrillation[J]. Nature, 2018, 555 (7698): 667- 672.
DOI |
27 |
HUANG X, TROY W C, YANG Q, et al. Spiral waves in disinhibited mammalian neocortex[J]. The Journal of Neuroscience, 2004, 24 (44): 9897- 9902.
DOI |
28 |
VIVENTI J, KIM D H, VIGELAND L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo[J]. Nature Neuroscience, 2011, 14 (12): 1599- 1605.
DOI |
29 |
VIVENTI J, KIM D H, VIGELAND L, et al. Better resolution and fewer wires discover epileptic spiral waves[J]. Epilepsy Currents, 2012, 12 (4): 147- 149.
DOI |
[1] | 刘利, 牛胜利, 朱金辉, 左应红, 谢红刚, 商鹏. 临近空间核爆炸碎片云运动的数值模拟[J]. 计算物理, 2022, 39(5): 521-528. |
[2] | 吴丽媛, 张素英. 自旋相关光晶格中玻色-爱因斯坦凝聚体的基态[J]. 计算物理, 2022, 39(5): 617-623. |
[3] | 杜旭林, 程林松, 牛烺昱, 陈玉明, 曹仁义, 谢永红. 考虑水力压裂缝和天然裂缝动态闭合的三维离散缝网数值模拟[J]. 计算物理, 2022, 39(4): 453-464. |
[4] | 孙梦营, 马明, 过海龙, 姚孟君, 徐猛, 张莹. 零重力点热源马兰戈尼FTM数值模拟[J]. 计算物理, 2022, 39(2): 191-200. |
[5] | 赵腾飞, 张华. 气泡碰撞过程中形变及破碎现象分析[J]. 计算物理, 2022, 39(1): 41-52. |
[6] | 陈绍英, 王雪丽, 高志梅, 袁国勇. 环域反馈下复Ginzburg-Landau系统的螺旋波动力学行为[J]. 计算物理, 2022, 39(1): 118-126. |
[7] | 杜丹, 李帅, 阳璞琼, 冯军, 向东, 龚学余. 螺旋天线轴向长度对螺旋波传播、吸收的影响[J]. 计算物理, 2021, 38(6): 713-721. |
[8] | 王俊捷, 寇继生, 蔡建超, 潘益鑫, 钟振. 基于Tolman长度的Lucas-Washburn渗吸模型改进及数值模拟[J]. 计算物理, 2021, 38(5): 521-533. |
[9] | 杨展康, 牛奕. 温度及围护通风对独头巷道氡浓度分布的影响[J]. 计算物理, 2021, 38(4): 456-464. |
[10] | 白婧, 黄志精, 唐国宁. 用运动控制器来终止心律失常[J]. 计算物理, 2021, 38(3): 352-360. |
[11] | 胡少亮, 徐小文, 郑宇腾, 赵振国, 王卫杰, 徐然, 安恒斌, 莫则尧. 系统级封装应用中时谐Maxwell方程大规模计算的求解算法:现状与挑战[J]. 计算物理, 2021, 38(2): 131-145. |
[12] | 陈皓, 蔡汝铭. 平流层飞艇气动外形优化设计:螺旋桨的影响[J]. 计算物理, 2020, 37(5): 562-570. |
[13] | 黄志精, 白婧, 唐国宁. 单向耦合神经元网络中螺旋波的自发形成机制[J]. 计算物理, 2020, 37(5): 612-622. |
[14] | 王子墨, 李凌. 超短激光打孔中快速相变的格子玻尔兹曼模拟[J]. 计算物理, 2020, 37(3): 299-306. |
[15] | 王智, 邹高域, 宫敬, 白剑锋, 翟博文. 一维双流体模型的压力修正算法[J]. 计算物理, 2019, 36(4): 413-420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发