[1] SHAO Y, PENG Z, LEE J, et al. High speed interconnects of multi-layer PCB analysis by using non-conformal domain decomposition method[C]. International Symposium on Electromagnetic Compatibility, 2010:637-642. [2] SHAO Y, PENG Z, LEE J, et al. Full-wave real-life 3-D package signal integrity analysis using nonconformal domain decomposition method[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(2):230-241. [3] SHAO Y, PENG Z, LEE J, et al. Signal integrity analysis of high-speed interconnects by using nonconformal domain decomposition method[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(1):122-130. [4] MEINDL J D. Beyond Moore's law:The interconnect era[J]. Computing in Science and Engineering, 2003, 5(1):20-24. [5] 詹文浩, 戴国华. 手机射频前端发展状况及技术分析[J]. 移动通信, 2017, 041(007):5-9. [6] BUCCELLA C, FELIZIANI M, MANZI G, et al. Three-dimensional FEM approach to model twisted wire pair cables[J]. IEEE Conference on Electromagnetic Field Computation, 2006, 43(4):1373-1376. [7] HOLLAUS K, BIRO O, CALDERA P, et al. Simulation of crosstalk on printed circuit boards by FDTD, FEM, and a circuit model[J]. IEEE Transactions on Magnetics, 2008, 44(6):1486-1489. [8] ZHU X, WU W, ZHANG G, CAI L. Parallel simulation and analysis of large EMP bounded wave simulator with horizontal polarization[J]. Chinese Journal of Computational Physic, 2019, 36(6):691-698. [9] ZHU X, CHEN Z, WU W, et al. Simulation of large vertically polarized EMP radiating wave simulator with discrete resistors using parallel FDTD method[J]. Chinese Journal of Computational Physic, 2019, 36(3):349-356. [10] YANG Y. A magnetic field divergence cleaning method in MHD numerical simulations[J]. Chinese Journal of Computational Physics, 2018, 35(4):437-442. [11] MAO J, XIANG K, WANG Y, WANG H. Numerical simulation of magnetohydrodynamic duct flow with sudden expansion[J]. Chinese Journal of Computational Physic, 2018, 35(5):597-605. [12] CHEN J, CHEN Z, CUI T, et al. An adaptive finite element method for the eddy current model with circuit/field couplings[J]. SIAM Journal on Scientific Computing, 2010, 32(2):1020-1042. [13] LEE S, VOUVAKIS M N, LEE J, et al. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays[J]. Journal of Computational Physics, 2005, 203(1):1-21. [14] PENG Z, LEE J F. Non-conformal domain decomposition method with mixed true second order transmission condition for solving large finite antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5):1638-1651. [15] SHAO Y, PENG Z, LIM K H, et al. Non-conformal domain decomposition methods for time-harmonic Maxwell equations[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 468(2145):2433-2460. [16] WANG W J, XU R, LI H Y, et al. Massively parallel simulation of large-scale electromagnetic problems using one high-performance computing scheme and domain decomposition method[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5):1523-1531. [17] WANG W J, YE Z B, ZHOU H J. Novel strategies based on domain decomposition method for electromagnetic problem analysis[C]. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2018. IEEE, 2018:1-3. [18] ENGQUIST B, YING L. Sweeping preconditioner for the Helmholtz equation:Moving perfectly matched layers[J]. Multiscale Modeling & Simulation, 2011, 9(2):686-710. [19] LIU F, YING L. Sparsifying preconditioner for the time-harmonic Maxwell's equations[J]. Journal of Computational Physics, 2019, 376:913-923. [20] POULSON J, ENGQUIST B, LI S, et al. A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations[J]. SIAM Journal on Scientific Computing, 2013, 35(3):C194-C212. [21] CHEN Z, XIANG X. A source transfer domain decomposition method for Helmholtz equations in unbounded domain[J]. SIAM Journal on Numerical Analysis, 2013, 51(4):2331-2356. [22] CHEN Z, XIANG X. A source transfer domain decomposition method for Helmholtz equations in unbounded domain part II:Extensions[J]. Numerical Mathematics-Theory Methods and Applications, 2013, 6(3):538-555. [23] RAWAT V, LEE J. Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[J]. SIAM Journal on Scientific Computing, 2010, 32(6):3584-3603. [24] PENG Z, LEE J F. A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in R3[J]. SIAM Journal on Scientific Computing, 2012, 34(3):A1266-A1295. [25] BONAZZOLI M, DOLEAN V, GRAHAM I G, et al. A two-level domain-decomposition preconditioner for the time-harmonic Maxwell's equations[C]. Computational Science and Engineering, 2018:149-157. [26] BONAZZOLI M, DOLEAN V, GRAHAM I G, et al. Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption[J]. Mathematics of Computation, 2019, 88(320):2559-2604. [27] COCQUET P H, GANDER M J. How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid[J]. SIAM Journal on Scientific Computing, 2017, 39(2):A438-A478. [28] GANDER M J, GRAHAMI G, SPENCEE A, et al. Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning:What is the largest shift for which wavenumber-independent convergence is guaranteed?[J]. Numerische Mathematik, 2015, 131(3):567-614. [29] HU Q, YUAN L. A plane-wave least-squares method for time-harmonic Maxwell's equations in absorbing media[J]. SIAM Journal on Scientific Computing, 2014, 36(4):A1937-A1959 [30] HU Q, ZHANG H. Substructuring preconditioners for the systems arising from plane wave discretization of Helmholtz equations[J]. SIAM Journal on Scientific Computing, 2016, 38(4):A2232-A2261. [31] HU Q, LI X. Novel multilevel preconditioners for the systems arising from plane wave discretization of Helmholtz equations with large wave numbers[J]. SIAM Journal on Scientific Computing, 2017, 39(4):A1675-A1709. [32] HU Q, LI X. Efficient multilevel preconditioners for three-dimensional plane wave Helmholtz systems with large wave numbers[J]. Multiscale Modeling & Simulation, 2017, 15(3):1242-1266. [33] PENG J, WANG J, SHU S, et al. Adaptive BDDC algorithms for the system arising from plane wave discretization of Helmholtz equations[J]. International Journal for Numerical Methods in Engineering, 2018, 116:683-707. [34] PENG Z, RAWAT V, LEE J, et al. One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems[J]. Journal of Computational Physics, 2010, 229(4):1181-1197. [35] PENG Z, LEE J. Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[J]. Journal of Computational Physics, 2010, 229(16):5615-5629. [36] EI MRABET O. High frequency structure simulator (HFSS) tutorial[J]. IETR, UMR CNRS, 2006, 6164:2005-2006. [37] AGUILAR A G, VAN TONDER J, JAKOBUS U, et al. Overview of recent advances in the electromagnetic field solver FEKO[C]. 9th European Conference on Antennas and Propagation (EuCAP), 2015. IEEE, 2015:1-5. [38] DICKINSON E J, EKSTROM H, FONTES E, et al. COMSOL multiphysics:Finite element software for electrochemical analysis:A mini-review[J]. Electrochemistry Communications, 2014:71-74. [39] NEDELEC J C. Mixed finite elements in R3[J]. Numerische Mathematik, 1980, 35(3):315-341. [40] XU X, MO Z. Algebraic interface-based coarsening AMG preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation[J]. Numerical Linear Algebra with Applications, 2017, 24(2):e2078. [41] 赵振国, 李光荣, 童杰, 等. 封装结构强电磁脉冲多物理效应并行计算程序研制[J]. 强激光与粒子束, 2018, 030(008):29-33. [42] LIU Q, MO Z, ZHANG A, et al. JAUMIN:A programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Trans HPC, 2019, 1(1):35-48. [43] TIAN R, ZHOU M, WANG J, et al. A challenging dam structural analysis:Large-scale implicit thermo-mechanical coupled contact simulation on Tianhe-II[J]. Computational Mechanics, 2019, 63(1):99-119. [44] BALAY S, ABHYANKAR S, ADAMS M, et al. PETSc users manual revision 3.8[R]. Argonne National Lab (ANL), Argonne, IL(United States),2017. [45] AMESTOY P R, DUFF I S, LECELLENT J, et al. MUMPS:A general purpose distributed memory sparse solver[C]. Parallel Computing, 2000:121-130. [46] FALGOUT R D, YANG U M. Hypre:A library of high performance preconditioners[C]. International Conference on Computational Science, 2002:632-641. [47] XU X, MO Z, YUE X, et al. α Setup-AMG:An adaptive-setup-based parallel AMG solver for sequence of sparse linear systems[J/OL]. CCF Trans HPC, 2020. https://doi.org/10.1007/s42514-020-00033-w. [48] CAI X, SARKIS M. A restricted additive Schwarz preconditioner for general sparse linear systems[J]. SIAM Journal on Scientific Computing, 1999, 21(2):792-797. [49] HIPTMAIR R, XU J. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces[J]. SIAM Journal on Numerical Analysis, 2007, 45(6):2483-2509. [50] CHEN Z, WANG L, ZHENG W, et al. An adaptive multilevel method for time-harmonic Maxwell equations with singularities[J]. SIAM Journal on Scientific Computing, 2007, 29(1):118-138. [51] HU Q, LIU C, SHU S, et al. An effective preconditioner for a PML system for electromagnetic scattering problem[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2015, 49(3):839-854. [52] KOLEV T V, VASSILEVSKI P S. Parallel auxiliary space AMG for H(curl) problems[J]. Journal of Computational Mathematics, 2009, 27(5):604-623. |