[1] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:Theory and application to non-spherical stars[J]. Monthly Notices R Astronomy Soc, 1977, 181(3):375-389. [2] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977, 82(12):1013-1024. [3] 沈雁鸣,何琨,陈坚强,等. SPH统一算法对自由流体冲击弹性结构问题的模拟[J]. 振动与冲击, 2015, 34(16):60-65. [4] 崔伟峰,曾新吾. SPH算法在超高速碰撞数值模拟中的应用[J].国防科技大学学报,2007,29(2):43-46. [5] CHEN Z, ZONG Z, LIU M B, et al. An SPH model for multiphase flows with complex interfaces and large density differences[J]. Journal of Computational Physics, 2015, 283:169-188. [6] GONG K, SHAO S D, LIU H, et al. Two-phase SPH simulation of fluid-structure interactions[J]. Journal of Fluids and Structures,2016, 65:155-179. [7] PRICE D J. Smoothed particle magneto hydrodynamics-IV using the vector potential[J]. Monthly Notices of the Royal Astronomical Society, 2010, 401(3):1475-1499. [8] BORVE S, OMANG M, TRULSEN J. Two-dimensional MHD smoothed particle hydrodynamics stability analysis[J]. The Astrophysical Journal Supplement Series, 2004, 153(2):447-462. [9] BENZ W, ASPHAUG E. Simulations of brittle solids using smooth particle hydrodynamics[J]. Computer Physics Communications, 1995, 87(1-2):253-265. [10] BONET J, KULASEGARAN S, RODRIGUEZ-PAZ M X, et al. Variabtional formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems[J]. Computer Methods in Applied Mechanics and Engineering,2004, 193(12-14):1245-1256. [11] 缪吉伦,陈景秋,张永祥. SPH方法在自由表面流体研究中的应用[J]. 水利水电科技进展, 2011, 31(3):20-23. [12] 沈雁鸣,陈坚强. SPH方法对气液两相流自由界面运动的追踪模拟[J].空气动力学报,2012,30(2):157-161. [13] SHANGGUAN Z N, ZHOU X L, SONG X, et al. Numerical simulation of typical free surface flow with SPH-ALE[J]. Chinese Journal of Computational Physics, 2017, 34(6):641-650. [14] 强洪夫,陈福振,高巍然. 修正表面张力算法的SPH方法及其实现[J].计算物理,2011,28(3):375-384. [15] HU X Y, ADAMS N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics, 2006, 213(2):844-861. [16] ZHOU J, XU S L. On SPH method with treatment of gas-liquid interface boundary conditions[J]. Chinese Journal of Computational Physics, 2017, 34(4):409-416. [17] GONG K, LIU H. Water entry of a wedge based on SPH model with an improved boundary treatment[J]. J Hydrodyn Ser B, 2009, 21(6):750-757. [18] 石传奇,安翼,杨家修. 滑坡涌浪的三维SPH方法模拟及其工程应用[J]. 中国科学:物理学力学天文学,2015, 45(10):104706. [19] ZHENG J, YU K P, WANG J F, et al. SPH for developing super cavity induced by high speed underwater body[J]. Chinese Journal of Computational Physics, 2014, 31(1):27-32. [20] SMITH G D. Numerical solution of partial differential equations:Finite difference methods[M]. Oxford University Press, 1985:11-79. [21] JOVANOVIC B S, SULI E. Analysis of finite difference schemes for linear partial differential equations with generalized solutions[M]. Springer, 2016:91-240. [22] MORRIS J P. Analysis of smoothed particle hydrodynamics with applications[D]. Monash University, 1996. [23] FULK D A. A numerical analysis of smoothed particle hydrodynamics[D]. Air Force Institute of Technology, 1994. [24] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH):An overview and recent developments[J]. Archives of Computational Methods in Engineering,2010,17(1):25-76. [25] COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191(2):448-475. |