计算物理 ›› 2023, Vol. 40 ›› Issue (6): 677-688.DOI: 10.19596/j.cnki.1001-246x.8672
欧阳思杰(), 胡双辉(
), 欧阳学峰, 朱万坡, 兰源丹, 黄旋格
收稿日期:
2022-11-28
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
胡双辉
作者简介:
欧阳思杰, 男, 硕士, 研究方向为等离子体物理, E-mail: 1844742893@qq.com
基金资助:
Sijie OUYANG(), Shuanghui HU(
), Xuefeng OUYANG, Wanpo ZHU, Yuandan LAN, Xuange HUANG
Received:
2022-11-28
Online:
2023-11-25
Published:
2024-01-22
Contact:
Shuanghui HU
摘要:
基于国际热核聚变实验堆(ITER)装置具有内部输运垒(ITB)的方案, 研究了离散阿尔芬本征模(αTAE)的物理特征, 其中α是等离子体压强梯度的标度参数。采用基于负离子的中性束注入(NNBI)加热和电流驱动能获得一个大且强的ITB以实现更高的性能, 并讨论该方案中αTAE的不稳定性。在纯射频方案中, 探究了ITB的收缩、维持和坍塌过程中的αTAE。模拟结果表明: αTAE发生于具有陡峭压强梯度的ITB区域, 形成的ITB越强会存在越多的αTAE, 且该模式的频率也越高。在高能量粒子条件下αTAE的多个分支容易变得不稳定, 被激发的αTAE其频率随着束能量的增加而增加。ITB作为高βp方案的关键, 具有ITER稳态的许多理想特征, 因此关联性地探究了DIII-D高βp方案中αTAE。
中图分类号:
欧阳思杰, 胡双辉, 欧阳学峰, 朱万坡, 兰源丹, 黄旋格. ITER具有内部输运垒方案中的离散阿尔芬本征模[J]. 计算物理, 2023, 40(6): 677-688.
Sijie OUYANG, Shuanghui HU, Xuefeng OUYANG, Wanpo ZHU, Yuandan LAN, Xuange HUANG. Discrete Alfvén Eigenmodes in ITER with the Internal Transport Barrier Scenario[J]. Chinese Journal of Computational Physics, 2023, 40(6): 677-688.
图1 (a)(s, α)参数和(b)压力沿ρ方向的剖面;(c)ωr/ωA0和log(-γ/ωA0)沿ρ方向的剖面分别用正方形(□)和加号(+)来表示;(d)为势阱结构
Fig.1 (a) The parameters (s, α) and (b) pressure profile versus ρ; (c) squares (□) and crosses (+) are used to describe ωr/ωA0 and log(-γ/ωA0) versus ρ, respectively; (d) structure of potential wells
图2 (a) 势阱V以及MHD中s=0.61、α=5.98时的(b)(1, 0)模,(c)(1, 1)模,(d)(2, 0)模的模结构(图中δψ的实部和虚部分别用实线和虚线表示。)
Fig.2 (a) Potential V and (b) δψ(1, 0), (c) δψ(1, 1) and (d) δψ(2, 0) versus θ for α=5.98, s=0.61 in MHD (Real and imaginary δψ is plotted by solid and dashed line, respectively.)
图5 ρ=0.65,θb∈[70°, 110°],ωr/ωA0(—)和γ/ωA0(- - -)随vE/vA0的变化
Fig.5 Real frequencies ωr/ωA0 (—) and growth rates γ/ωA0 (- - -) versus vE/vA0 for θb∈[70°, 110°] at ρ=0.65
图7 (a) t=2 000 s,(s, α)参数沿着ρ方向的剖面;(b)ωr/ωA0和log(-γ/ωA0)沿着ρ方向的剖面,分别用正方形(□)和加号(+)表示
Fig.7 (a) The parameters (s, α) versus ρ at t=2 000 s; (b) Squares (□) and crosses (+) are used to describe the real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) versus ρ at t=2 000 s, respectively
图8 (a) s=-0.56,ωr/ωA0和log(-γ/ωA0)随α的变化情况;(b)α=4.8,ωr/ωA0和log(-γ/ωA0)随s的变化情况(ωr/ωA0和log(-γ/ωA0)分别用实线(—)和虚线(-)表示。)
Fig.8 (a) Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) versus α for s=-0.56; (b) ωr/ωA0 and log(-γ/ωA0) versus s for α=4.8 (ωr/ωA0and log(-γ/ωA0) are plotted by solid lines (—) and dashed lines (-), respectively.)
图9 (a) α和(b)s沿ρ方向的剖面;在t=2 000 s撤掉ECCD后(c)ωr/ωA0和(d)log(-γ/ωA0)沿着ρ的剖面
Fig.9 The parameters of (a) α and (b) s versus ρ; (c) real frequencies ωr/ωA0 and (d) the parameter relating to imaginary frequencies log(-γ/ωA0) versus ρ after the ECCD removed at t=2 000 s
图10 在去除12 MW的ICH和LH系统和加入12 MW的NBI加热后,(a)t=2 300 s,(s, α)参数沿ρ方向的剖面和(b)t=2 300 s,αTAE沿ρ方向的发生区域(正方形(□)和加号(+)分别代表ωr/ωA0和log(-γ/ωA0)。)
Fig.10 After the addition of 12 MW of NBI heating by removing 12 MW of ICH and the LH system, (a) the parameters (s, α) versus ρ at t=2 300 s and (b) the range of αTAEs at t=2 300 s (Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) are plotted by square (□) and crosses (+), respectively.)
图11 t=2 000 s时,ρ=0.65处ωr/ωA0(—)和γ/ωA0(- - -)随kθρA0的变化
Fig.11 (a) Real frequencies ωr/ωA0 (—) and growth rates γ/ωA0 (- - -) versus kθρA0 at ρ=0.45 at t=2 000 s
图12 t=2 000 s时,ρ=0.65处(a)ωr/ωA0(—)和γ/ωA0(- - -)随vE/vA0变化的情况;(b)势阱,混合模型下的αTAE;(c)(3, 0)模;(d)(4, 0)模
Fig.12 (a) Real frequencies ωr/ωA0 (—) and growth rate γ/ωA0 (- - -) versus vE/vA0 at ρ=0.45 at t=2 000 s; (b) potential well, (c) αTAEs (3, 0) and (d) (4, 0) verse θ in hybrid model
图13 (a)、(b)和(c)分别是方案1、方案2和方案3中(s, α)沿ρ方向的剖面;(d)、(e)和(f)分别是方案1、方案2和方案3中αTAE (1, 0)模沿ρ方向发生的区域(ωr/ωA0和log(-γ/ωA0)分别用正方形(□)和加号(+)表示。)
Fig.13 (a), (b) and (c) the parameters (s, α) versus ρ, corresponding to Case 1, Case 2 and Case 3; (d), (e) and (f) the frequency profiles of αTAE (1, 0), corresponding to Case 1, Case 2 and Case 3, respectively (Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) are plotted by square (□) and crosses (+), respectively.)
图14 方案3中,ρ=0.66, (a)ωr/ωA0(—)和γ/ωA0(- - -)随着vE/vA0变化的情况;(b)势阱;在混合模型下的αTAE(c)(3, 0)模和(d)(3, 1)模
Fig.14 In case 3, (a) real frequencies ωr/ωA0 (—) and growth rates γ/ωA0 (- - -) versus vE/vA0 at ρ=0.66; (b) potential well; (c) αTAE (3, 0) and (d) (3, 1) verse θ in hybrid model
1 |
CHEN L . Theory of magnetohydrodynamic instabilities excited by energetic particles in Tokamaks[J]. Physics of Plasmas, 1994, 1 (5): 1519- 1522.
DOI |
2 |
CHENG C , CHEN L , CHANCE M . High-n ideal and resistive shear Alfvén waves in Tokamaks[J]. Annals of Physics, 1985, 161 (1): 21- 47.
DOI |
3 | YANG W , LI G , HU Y , et al. Linear stability of toroidal Alfvén eigenmodes in the Chinese fusion engineering test reactor[J]. Fusion Engineering and Design, 2017, 114 (1): 118- 126. |
4 |
ZHU X , WANG F , WANG Z . Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas[J]. Chinese Physics B, 2020, 29 (2): 025201.
DOI |
5 |
FU G , CHENG C . Theory of a high-n toroidicity-induced shear Alfvén eigenmode in tokamaks[J]. Physics of Fluids B: Plasma Physics, 1990, 2 (5): 985- 993.
DOI |
6 |
WEI S , WANG Y , SHI P , et al. Nonlinear coupling of reversed shear Alfvén eigenmode and toroidal Alfvén eigenmode during current ramp[J]. Chinese Physics Letters, 2021, 38 (3): 035201.
DOI |
7 |
CHEN W , YU L , LIU Y , et al. Destabilization of reversed shear Alfvén eigenmodes driven by energetic ions during NBI in HL-2A plasmas with qmin~1[J]. Nuclear Fusion, 2014, 54 (10): 104002.
DOI |
8 |
ZHANG T , LIU H , LI G , et al. Experimental observation of reverse-sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20 (11): 115101.
DOI |
9 |
WANG W , ZHOU D , HU Y , et al. Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap[J]. Chinese Physics B, 2018, 27 (12): 125202.
DOI |
10 |
HU S , CHEN L . Discrete Alfvén eigenmodes in high-β toroidal plasmas[J]. Physics of Plasmas, 2004, 11 (1): 1- 4.
DOI |
11 |
HU S , CHEN L . Discrete Alfvén eigenmodes excited by energetic particles in high-β toroidal plasmas[J]. Plasma Physics and Controlled Fusion, 2005, 47 (8): 1251- 1269.
DOI |
12 | 王帅, 龙超云, 胡双辉, 等. JET运行条件下高能量粒子激发的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2013, 33 (4): 301- 311. |
13 |
孔冉, 胡双辉, 王帅, 等. JT-60U及JT-60SA运行条件下高能量粒子激发的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2013, 33 (2): 113- 120.
DOI |
14 |
王一如, 胡双辉, 姚龙宝, 等. DIII-D高性能运行参数下的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2012, 32 (2): 140- 147.
DOI |
15 |
WANG J , HU C , HU S , et al. Plasma science and technology, Alfvén instabilities excited by energetic particles in a parameter regime similar to EAST operation[J]. Plasma Science and Technology, 2013, 15 (8): 750- 754.
DOI |
16 |
WANG J , HU S , DAI Q , et al. Discrete Alfvén eigenmodes in international thermonuclear experimental reactor operations with negative magnetic shear[J]. Chinese Physics B, 2010, 19 (9): 095202.
DOI |
17 |
ZOU Y , CHAN V , HUANG J , et al. Validation of Alfvén eigenmode simulations on DIII-D and projection for CFETR scenario[J]. Nuclear Fusion, 2019, 59 (6): 066005.
DOI |
18 |
SHIMOMURA Y , MURAKAMI Y , POLEVOI A , et al. ITER: Opportunity of burning plasma studies[J]. Plasma Physics and Controlled Fusion, 2001, 43 (12A): A385- A394.
DOI |
19 |
SIPS A , GIRUZZI G , IDE S , et al. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor[J]. Physics of Plasmas, 2015, 22 (2): 021804.
DOI |
20 |
MURAKAMI M , PARK J , GIRUZZI G , et al. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER[J]. Nuclear Fusion, 2011, 51 (10): 103006.
DOI |
21 |
WOLF R . Internal transport barriers in tokamak plasmas[J]. Plasma Physics and Controlled Fusion, 2003, 45 (1): R1- R91.
DOI |
22 |
IDA K , FUJITA T . Internal transport barrier in tokamak and helical plasmas[J]. Plasma Physics and Controlled Fusion, 2018, 60 (3): 033001.
DOI |
23 |
VOITSEKHOVITCH I , GARBET X , BENKADD S , et al. Stabilization of ion temperature gradient driven turbulence and formation of an internal transport barrier in a tokamak[J]. Physics of Plasmas, 2002, 9 (11): 4671- 4684.
DOI |
24 |
JIAN G , HUANG L . The instability analysis of ion temperature gradient driven in a tokamak plasma with negative magnetic shear[J]. Chinese Journal of Computational Physics, 2001, 18 (6): 527- 530.
DOI |
25 | LONG Y , MU Z , DONG J , et al. Numerical simulation and parallel efficiency of internal transport with barrier trigger in Tokamak plasmas[J]. Chinese Journal of Computational Physics, 2007, 24 (2): 141- 145. |
26 |
LONG Y , MU Z , WANG A , et al. Numerical method for a kind of singular complex eigenequations[J]. Chinese Journal of Computational Physics, 2006, 23 (4): 436- 440.
DOI |
27 |
MCCLENAGHAN J , GAROFALO A , LAO L , et al. Transport at high βp and development of candidate steady state scenarios for ITER[J]. Nuclear Fusion, 2020, 60 (4): 046025.
DOI |
28 |
GARCIA J , GIRUZZI G , ARTAUD J , et al. Integrated modeling of ITER steady-state scenarios[J]. Plasma Physics and Controlled Fusion, 2008, 50 (12): 124032.
DOI |
29 |
DING S , GAROFALO A , QIAN J , et al. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST[J]. Physics of Plasmas, 2017, 24 (5): 056114.
DOI |
30 |
STAEBLER G , GAROFALO A , PAN C , et al. Transport barriers in bootstrap-driven tokamaks[J]. Physics of Plasmas, 2018, 25 (5): 056113.
DOI |
31 |
CONNOR J , HASTIE R , TAYLOR J . High mode number stability of an axisymmetric toroidal plasma transport barriers in bootstrap-driven tokamaks[J]. Proc R Soc Lond A, 1979, 365 (1720): 1- 17.
DOI |
32 |
CONNOR J , HASTIE R , TAYLOR J . Shear, periodicity, and plasma ballooning modes[J]. Physical Review Letters, 1978, 40 (6): 396- 399.
DOI |
33 |
CHEN L , HASEGAWA A . Kinetic theory of geomagnetic pulsations[J]. Journal of Geophysical Research, 1991, 96 (A2): 1503- 1512.
DOI |
34 |
PARKER S , LEE W . A fully nonlinear characteristic method for gyrokinetic simulation[J]. Physics of Fluids B: Plasma Physics, 1993, 5 (1): 77- 86.
DOI |
35 | CHEN L , ZONCA F . Theory of shear Alfvén waves in toroidal plasma[J]. Physica Scripta, 1995, 1995 (T60): 81- 90. |
36 |
ZHENG L , CHEN L , SANTORO R . Numerical simulations of toroidal Alfvén instabilities excited by trapped energetic ions[J]. Physics of Plasmas, 2000, 7 (6): 2469- 2476.
DOI |
[1] | 朱万坡, 胡双辉, 欧阳学锋, 欧阳思杰, 兰源丹. EAST高约束运行条件下离散阿尔芬本征模的数值模拟[J]. 计算物理, 2023, 40(4): 461-472. |
[2] | 朱仁柱, 何家丰, 黄泰豪, 阮行磊, 徐宇晨, 郭晋, 刘天元, 毛世峰, 叶民友. 压力修正算法对刮削层等离子体输运方程数值求解性能的影响[J]. 计算物理, 2023, 40(1): 29-39. |
[3] | 郑书昱, 彭佳臻, 张先梅, 薛二兵, 虞立敏. 基于神经网络的托卡马克能量约束时间预测[J]. 计算物理, 2021, 38(4): 423-430. |
[4] | 刘祖光, 李新霞, 杨明. 低混杂波高N‖分量对EAST等离子体电流驱动的影响[J]. 计算物理, 2020, 37(4): 467-472. |
[5] | 查学军, 钟德俊, 王福琼, 陈一平, 卢洪伟, 胡立群. EAST托卡马克杂质输运蒙特卡洛模拟[J]. 计算物理, 2015, 32(6): 715-721. |
[6] | 刘燕, 龚学余, 杨磊, 彭晓炜, 尹岚. 托卡马克中快波电流驱动下全波方程的数值求解[J]. 计算物理, 2012, 29(3): 375-382. |
[7] | 黄勤超, 王华忠, 罗家融, 袁旗平. EAST位形磁流体平衡的模拟[J]. 计算物理, 2006, 23(2): 231-236. |
[8] | 张先梅, 李有宜, 万宝年. 用MONTE CARLO方法计算托卡马克装置的中性氢原子密度分布[J]. 计算物理, 1999, 16(6): 606-609. |
[9] | 刘成安, 刘朝芬, 黄正丰, 刘忠兴. 聚变-裂变混合实验堆多维中子学的计算研究[J]. 计算物理, 1992, 9(3): 274-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发