计算物理 ›› 2024, Vol. 41 ›› Issue (3): 325-333.DOI: 10.19596/j.cnki.1001-246x.8726
崔文富()
收稿日期:
2023-03-13
出版日期:
2024-05-25
发布日期:
2024-05-25
作者简介:
崔文富(1970-), 高级工程师, 研究方向为油田开发地质及提高采收率, E-mail: b16020072@163.com
基金资助:
Received:
2023-03-13
Online:
2024-05-25
Published:
2024-05-25
摘要:
针对特高含水期砂岩油藏, 利用Volume of Fluid (VOF)可以追踪相界面动态变化、再现微观渗流物理过程的优势, 研究了驱替压力梯度对剩余油微观赋存状态和水驱采收率的影响。通过分析微观孔隙结构内的渗流特征和剩余油赋存状态, 揭示了驱替压力梯度对水驱采收率的影响规律: 驱替压力梯度增大能突破小喉道毛管力, 形成新的渗流通道, 进而增大水驱采出程度; 原油黏度和润湿性会对不同压力梯度下采出程度产生影响。
中图分类号:
崔文富. 驱替压力梯度对水驱油田采收率影响研究[J]. 计算物理, 2024, 41(3): 325-333.
Wenfu CUI. Study on Influence of Displacement Pressure Gradient on Water Flooding Oil Recovery[J]. Chinese Journal of Computational Physics, 2024, 41(3): 325-333.
图4 不同驱替压力梯度下的剩余油赋存形态(a) 0.01 MPa·m-1; (b) 0.03 MPa·m-1; (c) 0.07 MPa·m-1
Fig.4 Residual oil occurrence forms under pressure gradients of (a) 0.01 MPa·m-1; (b) 0.03 MPa·m-1 and (c) 0.07 MPa·m-1
模式 | 取值/(MPa·m-1) |
低驱替压力 | 0.03 |
高驱替压力 | 0.07 |
高-低-高模式 | 0.03-0.07-0.03 |
低-高-低模式 | 0.07-0.03-0.07 |
低-高模式 | 0.03-0.07 |
高-低模式 | 0.07-0.03 |
表1 变驱替压力梯度方案设计
Table 1 The scheme design of variable displacement pressure gradient
模式 | 取值/(MPa·m-1) |
低驱替压力 | 0.03 |
高驱替压力 | 0.07 |
高-低-高模式 | 0.03-0.07-0.03 |
低-高-低模式 | 0.07-0.03-0.07 |
低-高模式 | 0.03-0.07 |
高-低模式 | 0.07-0.03 |
图14 变驱替压力梯度下流场分布(a) 低; (b) 高-低-高; (c) 低-高-低; (b) 高
Fig.14 Flow field distribution with displacement pressure gradient of (a) low, (b) high-low-high, (c) low-high-low, and (d) high
1 |
余义常, 徐怀民, 高兴军, 等. 海相碎屑岩储层不同尺度微观剩余油分布及赋存状态——以哈得逊油田东河砂岩为例[J]. 石油学报, 2018, 39 (12): 1397- 1409.
DOI |
2 | 吕晓光, 李伟. 水驱油藏特高含水阶段提高采收率可行性研究及技术对策[J]. 油气地质与采收率, 2022, 29 (6): 130- 137. |
3 |
ZHOU Runnan , ZHANG Dong , WEI Jianguang . Experimental investigation on remaining oil distribution and recovery performances after different flooding methods[J]. Fuel, 2022, 322, 124219.
DOI |
4 | 冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟[J]. 计算物理, 2020, 37 (4): 439- 447. |
5 | 胡淑琼, 丁圣. 微观剩余油分布模式及控制因素分析[J]. 石化技术, 2016, 23 (3): 4, 6. |
6 | 冯其红, 白军伟. 驱替压力梯度对相渗曲线影响的网络模拟[J]. 大庆石油地质与开发, 2011, 30 (2): 84- 88. |
7 | 方越, 李洪生, 于春生, 等. 高注入倍数油水两相渗流特征研究[J]. 石油地质与工程, 2019, 33 (1): 56- 59. |
8 | 杨志兴, 许馨月, 陈自立, 等. 不同压力梯度下气水相渗曲线的实验和产能研究[J]. 科技与创新, 2019, (23): 39- 40. |
9 | 蔡建超, 夏宇轩, 徐赛, 等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52 (1): 208- 223. |
10 |
LAUTENSCHLAEGER M P , WEINMILLER J , KELLERS B , et al. Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media[J]. Advances in Water Resources, 2022, 170, 104320.
DOI |
11 |
HATIBOGLU C U , BABADAGLI T . Pore-scale studies of spontaneous imbibition into oil-saturated porous media[J]. Physical Review E, 2008, 77 (6): 066311.
DOI |
12 |
HUANG Ziyang , LIN Guang , ARDEKANI A M . Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J]. Journal of Computational Physics, 2020, 406, 109192.
DOI |
13 | 王鑫, 杨斌鑫. 耦合格子Boltzmann的聚合物结晶相场方法[J]. 化工学报, 2018, 69 (z2): 193- 199. |
14 | GAROOSI F , HOOMAN K . Numerical simulation of multiphase flows using an enhanced volume-of-fluid (VOF) method[J]. International Journal of Mechanical Sciences, 2022, 215, 106956. |
15 | HOANG D A , VAN STEIJN V , PORTELA L M , et al. Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method[J]. Computers & Fluids, 2013, 86, 28- 36. |
16 | SHAMS M , RAEINI A Q , BLUNT M J , et al. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method[J]. Journal of Computational Physics, 2018, 357, 159- 182. |
17 | 魏祥祥, 冯其红, 张先敏, 等. 基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究[J]. 计算物理, 2021, 38 (5): 573- 584. |
18 | YANG Yongfei , CAI Shaobin , YAO Jun , et al. Pore-scale simulation of remaining oil distribution in 3D porous media affected by wettability and capillarity based on volume of fluid method[J]. International Journal of Multiphase Flow, 2021, 143, 103746. |
19 | MAES J , SOULAINE C . A new compressive scheme to simulate species transfer across fluid interfaces using the volume-of-fluid method[J]. Chemical Engineering Science, 2018, 190, 405- 418. |
20 | YANG Zenan , NIU Haipeng , HUANG Liang , et al. High-spatial-resolution remote sensing image segmentation using adaptive watershed-driven joint MDEDNet[J]. Geocarto International, 2022, 37 (25): 10713- 10742. |
21 | JASAK H, JEMCOV A, TUKOVIĆ Ž. OpenFOAM: A C++ library for complex physics simulations[C]//International Workshop on Coupled Methods in Numerical Dynamics. Dubrovnik, Croatia: IUC, 2007: 1-20. |
22 | GOLPARVAR A , ZHOU Yingfang , WU Kejian , et al. A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media[J]. Advances in Geo-Energy Research, 2018, 2 (4): 418- 440. |
23 | DAVANLOU A . Adaptive time-step selection in volume of fluid (VOF) simulations[J]. Bulletin of the American Physical Society, 2020, 65 (1): P20.00006. |
24 | XIAO Junfeng , CAI Jianchao , XU Jianfeng . Saturated imbibition under the influence of gravity and geometry[J]. Journal of Colloid and Interface Science, 2018, 521, 226- 231. |
25 | XIAO Junfeng , LUO Youming , NIU Muyuan , et al. Study of imbibition in various geometries using phase field method[J]. Capillarity, 2019, 2 (4): 57- 65. |
[1] | 魏祥祥, 冯其红, 张先敏, 黄迎松, 刘丽杰. 基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究[J]. 计算物理, 2021, 38(5): 573-584. |
[2] | 冯其红, 赵蕴昌, 王森, 张以根, 孙业恒, 史树彬. 基于相场方法的孔隙尺度油水两相流体流动模拟[J]. 计算物理, 2020, 37(4): 439-447. |
[3] | 宋昱, 王飞, 郝鹏飞, 何枫. 考虑壁面接触效应的微流动数值模拟[J]. 计算物理, 2008, 25(1): 75-82. |
[4] | 刘月田, 徐明旺, 彭道贵, 张宏伟, 董彬. 各向异性渗透率油藏数值模拟[J]. 计算物理, 2007, 24(3): 295-300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发