1 |
MIHALAS D , MIHALAS B W . Foundations of radiation hydrodynamics[M]. New York: Oxford University Press, 1984.
|
2 |
FENG Tao , AN Hengbin , YU Xijun , et al. On linearization and preconditioning for radiation diffusion coupled to material thermal conduction equations[J]. Journal of Computational Physics, 2013, 236, 28- 40.
DOI
|
3 |
AN Hengbin , MO Zeyao , XU Xiaowen , et al. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations[J]. Journal of Computational Physics, 2009, 228 (9): 3268- 3287.
DOI
|
4 |
BRUNE P R , KNEPLEY M G , SMITH B F , et al. Composing scalable nonlinear algebraic solvers[J]. SIAM Review, 2015, 57 (4): 535- 565.
DOI
|
5 |
谷同祥, 安恒斌, 刘兴平, 等. 迭代方法和预处理技术[M]. 北京: 科学出版社, 2015.
|
6 |
KELLEY C T . Numerical methods for nonlinear equations[J]. Acta Numerica, 2018, 27, 207- 287.
DOI
|
7 |
KELLEY C T . Newton's method in mixed precision[J]. SIAM Reveiw, 2022, 64 (1): 191- 211.
DOI
|
8 |
KNOLL D A , KEYES D E . Jacobian-free Newton-Krylov methods: A survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193 (2): 357- 397.
DOI
|
9 |
ANDERSON D G . Iterative procedures for nonlinear integral equations[J]. Journal of the ACM, 1965, 12 (4): 547- 560.
DOI
|
10 |
AN Hengbin , JIA Xiaowei , WALKER H F . Anderson acceleration and application to the three-temperature energy equations[J]. Journal of Computational Physics, 2017, 347, 1- 19.
DOI
|
11 |
OUYANG Wenqing , TAO Jiong , MILZAREK A , et al. Nonmonotone globalization for anderson acceleration via adaptive regularization[J]. Journal of Scientific Computing, 2023, 96 (1): 5.
DOI
|
12 |
BROWN P N , SAAD Y . Hybrid Krylov methods for nonlinear systems of equations[J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11 (3): 450- 481.
DOI
|
13 |
DEMBO R S , EISENSTAT S C , STEIHAUG T . Inexact newton methods[J]. SIAM Journal on Numerical Analysis, 1982, 19 (2): 400- 408.
DOI
|
14 |
EISENSTAT S C , WALKER H F . Globally convergent inexact newton methods[J]. SIAM Journal on Optimization, 1994, 4 (2): 393- 422.
DOI
|
15 |
EISENSTAT S C , WALKER H F . Choosing the forcing terms in an inexact newton method[J]. SIAM Journal on Scientific Computing, 1996, 17 (1): 16- 32.
DOI
|
16 |
BROWN P N , WALKER H F , WASYK R , et al. On using approximate finite differences in matrix-free Newton-Krylov methods[J]. SIAM Journal on Numerical Analysis, 2008, 46 (4): 1892- 1911.
DOI
|
17 |
BROWN P N , SAAD Y . Convergence theory of nonlinear Newton-Krylov algorithms[J]. SIAM Journal on Optimization, 1994, 4 (2): 297- 330.
DOI
|
18 |
DENNIS J E Jr , SCHNABEL R B . Numerical methods for unconstrained optimization and nonlinear equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996.
|
19 |
安恒斌, 莫则尧. JFNK方法迭代过程与物理约束[J]. 计算物理, 2012, 29 (5): 654- 660.
DOI
|
20 |
AN Hengbin , WEN Ju , FENG Tao . On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method[J]. Journal of Computational and Applied Mathematics, 2011, 236 (6): 1399- 1409.
DOI
|
21 |
ANDERSON D G M . Comments on "anderson acceleration, mixing and extrapolation"[J]. Numerical Algorithms, 2019, 80 (1): 135- 234.
DOI
|
22 |
WALKER H F , NI Peng . Anderson acceleration for fixed-point iterations[J]. SIAM Journal on Numerical Analysis, 2011, 49 (4): 1715- 1735.
DOI
|
23 |
GOLUB G H , VAN LOAN C F . Matrix computations[M]. 3rd ed Baltimore: Johns Hopkins University Press, 1996.
|
24 |
HAELTERMAN R , BOGAERS A E J , SCHEUFELE K , et al. Improving the performance of the partitioned QN-ILS procedure for fluid-structure interaction problems: Filtering[J]. Computers & Structures, 2016, 171, 9- 17.
|
25 |
GANINE V , HILLS N J , LAPWORTH B L . Nonlinear acceleration of coupled fluid-structure transient thermal problems by Anderson mixing[J]. International Journal for Numerical Methods in Fluids, 2013, 71 (8): 939- 959.
DOI
|
26 |
LIPNIKOV K , SVYATSKIY D , VASSILEVSKI Y . Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems[J]. SIAM Journal on Scientific Computing, 2013, 35 (2): A1120- A1136.
DOI
|
27 |
LOTT P A , WALKER H F , WOODWARD C S , et al. An accelerated Picard method for nonlinear systems related to variably saturated flow[J]. Advances in Water Resources, 2012, 38, 92- 101.
DOI
|
28 |
FANG H , SAAD Y . Two classes of multisecant methods for nonlinear acceleration[J]. Numerical Linear Algebra with Applications, 2009, 16 (3): 197- 221.
DOI
|
29 |
WEI Fuchao, BAO Chenglong, LIU Yang. A class of short-term recurrence Anderson mixing methods and their applications[C]//International Conference on Learning Representations. Virtual: ICLR, 2022: 1-49.
|
30 |
TOTH A , KELLEY C T . Convergence analysis for Anderson acceleration[J]. SIAM Journal on Numerical Analysis, 2015, 53 (2): 805- 819.
DOI
|
31 |
EVANS C , POLLOCK S , REBHOLZ L G , et al. A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically)[J]. SIAM Journal on Numerical Analysis, 2020, 58 (1): 788- 810.
DOI
|
32 |
ZHANG Junzi , O'DONOGHUE B , BOYD S . Globally convergent type-Ⅰ Anderson acceleration for nonsmooth fixed-point iterations[J]. SIAM Journal on Optimization, 2020, 30 (4): 3170- 3197.
DOI
|
33 |
CAI Xiaochuan , KEYES D E . Nonlinearly preconditioned inexact newton algorithms[J]. SIAM Journal on Scientific Computing, 2002, 24 (1): 183- 200.
DOI
|
34 |
LIU Lulu , KEYES D E . Field-split preconditioned inexact Newton algorithms[J]. SIAM Journal on Scientific Computing, 2015, 37 (3): A1388- A1409.
DOI
|
35 |
BRUNNER T A , HAUT T S , NOWAK P F . Nonlinear elimination applied to radiation diffusion[J]. Nuclear Science and Engineering, 2020, 194 (11): 939- 951.
DOI
|