计算物理 ›› 2024, Vol. 41 ›› Issue (5): 630-642.DOI: 10.19596/j.cnki.1001-246x.8773

• 研究论文 • 上一篇    下一篇

一种稳健的水力压裂裂缝平面识别算法

林子愉1(), 刘月田1,*(), 裴雪皓1, 樊平天1,2, 薛亮1   

  1. 1. 中国石油大学(北京)石油工程学院, 北京 102249
    2. 延长油田股份有限公司南泥湾采油厂, 陕西 延安 716000
  • 收稿日期:2023-06-01 出版日期:2024-09-25 发布日期:2024-09-14
  • 通讯作者: 刘月田
  • 作者简介:林子愉(1999-), 女, 博士研究生, 从事致密储层裂缝描述与渗流规律研究, E-mail: lzy_plus@163.com
  • 基金资助:
    国家自然科学基金(52274048);北京市自然科学基金(3222037);陕西省技术创新引导专项计划项目(2023-YD-CGZH-02);中国石油科技创新基金项目(2020D-5007-0203)

A Robust Plane Identification Algorithm for Hydraulic Fracture

Ziyu LIN1(), Yuetian LIU1,*(), Xuehao PEI1, Pingtian FAN1,2, Liang XUE1   

  1. 1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
    2. Nanniwan Oil Production Plant of Yanchang Oilfield Co., Yan'an, Shaanxi 716000, China
  • Received:2023-06-01 Online:2024-09-25 Published:2024-09-14
  • Contact: Yuetian LIU

摘要:

提出一种稳健的水力压裂裂缝平面识别算法——抽样投影算法(RANSAC-MP), 通过随机抽样方法弱化无关破裂事件导致的离群噪声, 并提出最大投影平面拟合算法以减小环境噪声的影响, 同时结合了RANSAC算法的抗噪性和投影方法的降维效果。以实际直井微地震数据为例进行裂缝平面拟合, 结果表明: RANSAC-MP算法在多重噪声影响下表现出更强的稳健性和更高的计算精度, 当压裂仅形成单一裂缝时, 该算法可以直接处理原始数据。

关键词: 多重噪声影响, 抽样投影(RANSAC-MP), 裂缝平面识别, 水力压裂, 微地震数据点, 稳健性

Abstract:

The fracture morphology of hydraulic fracturing is a key parameter for evaluating the fracturing effect and predicting the yield. At present, the fracture information of fractured cracks is mainly extracted by microseismic monitoring at home and abroad, and it is difficult to obtain the fracture morphology through the planar identification algorithm by utilizing the microseismic data due to the existence of complex noise. For this reason, this paper proposes a robust planar identification algorithm for hydraulic fracturing cracks, the sampling projection algorithm (RANSAC-MP), which weakens the outlier noise caused by irrelevant rupture events through random sampling, and proposes a maximal projection planar fitting algorithm to minimize the influence of environmental noise, and at the same time, combines the noise resistance of the RANSAC algorithm and the advantages of the projection method with the noise resistance of the RANSAC algorithm. noise immunity and the dimension reduction effect of the projection method. The results show that the RANSAC-MP algorithm shows stronger robustness and higher computational accuracy under the influence of multiple noises, and the algorithm can directly process the original data when only a single fracture is formed by fracturing.

Key words: multiple noise effects, sampling-projection (RANSAC-MP), fracture identification, hydraulic fracturing, microseismic data points, robustness

中图分类号: