计算物理 ›› 2025, Vol. 42 ›› Issue (2): 160-170.DOI: 10.19596/j.cnki.1001-246x.8853

• 研究论文 • 上一篇    下一篇

基于残差神经网络的激光转塔气动光学效应快速预测

陈周纬宇1(), 任翔2,*(), 张飞舟2, 谷同祥2   

  1. 1. 中国工程物理研究院研究生院, 北京 100088
    2. 北京应用物理与计算数学研究所, 北京 100094
  • 收稿日期:2023-10-26 出版日期:2025-03-25 发布日期:2025-04-08
  • 通讯作者: 任翔
  • 作者简介:

    陈周纬宇, 男, 硕士研究生, 研究方向为并行数值算法, E-mail:

  • 基金资助:
    国家自然科学基金(12302295)

Rapid Prediction of Aero-optical Effects of Laser Turret Based on Residual Neural Networks

Zhouweiyu CHEN1(), Xiang REN2,*(), Feizhou ZHANG2, Tongxiang GU2   

  1. 1. Graduate School of China Academy of Engineering Physics, Beijing 100088, China
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • Received:2023-10-26 Online:2025-03-25 Published:2025-04-08
  • Contact: Xiang REN

摘要:

采用残差神经网络对来流Ma在0.3~0.8范围内球柱型激光转塔模型的稳态流场开展机器学习, 建立此范围内任意来流条件下的亚声速/跨声速流场预测, 并针对不同视场角下的光束波前畸变评估此模型的预估精度。学习模型可再现转塔流动中的边界层、流动分离以及分离剪切层等流动特征, 尤其包括跨声速流动中的非锚定激波间断现象。基于预测流场计算的不同视场角下的波前分布与根据传统计算流体力学(CFD)模拟流场的结果基本一致。该机器学习方法为工程领域中激光转塔气动光学效应自适应校正提供了策略。

关键词: 激光转塔, 气动光学效应, 跨声速流动, 机器学习, 残差神经网络

Abstract:

The residual neural network is used to carry out machine learning on the steady-state flow field of the hemisphere-on-cylinder laser turret model in the range of Ma=0.3~0.8, and the subsonic/transonic flow field under any incoming flow conditions in this range is established. The prediction accuracy of this model is evaluated for beam wavefront distortion under different view-of-field angles. The learning model reproduces flow characteristics such as boundary layers, flow separation, and separated shear layers in turret flows, including in particular unanchored shock discontinuities in transonic flow. The wavefront distribution based on the predicted flow field under different viewing angles is basically consistent with that calculated based on the flow field of CFD. This machine learning method provides a strategy for adaptive correction of laser turret aero-optical effects in the engineering field.

Key words: laser turret, aero-optic effect, transonic flow, machine learning, residual neural network