计算物理 ›› 2024, Vol. 41 ›› Issue (6): 772-782.DOI: 10.19596/j.cnki.1001-246x.8987
收稿日期:
2024-07-17
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
王涵
作者简介:
郭嘉玮, 博士研究生, 讲师, 研究方向为机器学习求解微分方程, E-mail: jiawei94@sina.cn
基金资助:
Jiawei GUO1,2(), Han WANG3,4,*(
), Tongxiang GU3
Received:
2024-07-17
Online:
2024-11-25
Published:
2024-12-26
Contact:
Han WANG
摘要:
近年来, 使用机器学习方法求解微分方程在不同领域受到越来越多的关注, 然而机器学习方法在求解时间发展方程上遇到许多问题。本文从数据驱动的深度学习方法和基于方程学习的深度学习方法两个方面对现阶段针对时间发展方程的机器学习求解方法进行总结, 并介绍在不同神经网络架构下针对性的求解算法。总结了使用物理信息引入的神经网络方法求解时间发展方程的训练特点与最新工作, 并对未来工作进行展望。
郭嘉玮, 王涵, 谷同祥. 求解时间发展方程的机器学习方法[J]. 计算物理, 2024, 41(6): 772-782.
Jiawei GUO, Han WANG, Tongxiang GU. Machine Learning Methods for Solving Evolution Equation[J]. Chinese Journal of Computational Physics, 2024, 41(6): 772-782.
图1 传统数值算法、包含物理信息的学习方法和纯数据驱动方法的数据特征
Fig.1 Data characteristics of traditional numerical methods, physics-informed learning methods and data-driven methods
图3 PINN方法求解时间发展方程示意图(Adam优化算法迭代1 500步的训练结果) (a) 逐点误差; (b)逐点残差
Fig.3 Training results of PINN method for solving evolution equation with Adam optimization iteration step of 1 500 (a) point-wise error; (b) point-wise residual
图4 标准PINN方法求解对流方程(2)的训练过程(a)损失函数变化曲线; (b)不同迭代步时神经网络的预测; (c)不同迭代步时神经网络预测的逐点误差
Fig.4 Training process of the standard PINN method for solving convection Eq.(2)(a) loss curves; (b) predictions of neural network at different iteration steps; (c) point-wise errors of neural network predictions at different iteration steps
1 |
DOI |
2 |
DOI |
3 |
DOI |
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
DOI |
8 |
|
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
DOI |
20 |
DOI |
21 |
DOI |
22 |
|
23 |
|
24 |
DOI |
25 |
DOI |
26 |
DOI |
27 |
DOI |
28 |
DOI |
29 |
|
30 |
|
31 |
KAO T, ZHAO J, ZHANG L. pETNNs: Partial evolutionary tensor neural networks for solving time-dependent partial differential equations[DB/OL]. arXiv, 2024: 2403.06084(2024-03-10). https://arxiv.org/abs/2403.06084.
|
32 |
DOI |
33 |
ZHANG Xuan, HELWIG J, LIN Y, et al. SineNet: Learning temporal dynamics in time-dependent partial differential equations[DB/OL]. The Twelfth International Conference on Learning Representations. Vienna, Austria: ICLR, 2024.
|
34 |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1. Montreal, Canada: MIT Press, 2015: 802-810.
|
35 |
RAO Chengping, SUN Hao, LIU Yang. Hard encoding of physics for learning spatiotemporal dynamics[DB/OL]. arXiv, 2021: 2105.00557(2021-05-02). https://arxiv.org/abs/2105.00557.
|
36 |
DOI |
37 |
LU Lu, JIN Pengzhan, KARNIADAKIS G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the Universal approximation theorem of operators[J]. arXiv, 2019: 03193(2020-04-15) [2024-07-01]. https://arxiv.org/abs/1910.03193 .
|
38 |
BHATTACHARYA K, HOSSEINI B, KOVACHK N B, et al. Model reduction and neural networks for parametric PDEs[J]. arXiv, 2020: 03180(2021-01-17). https://arxiv.org/abs/2005.03180.
|
39 |
LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel network for partial differential equations[J]. arXiv, 2020: 03485(2020-03-07), https://arxiv.org/abs/2003.03485.
|
40 |
CHEN R T Q, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018: 6572-6583.
|
41 |
DOI |
42 |
LI Zongyi, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[DB/OL]. arXiv, 2020: 08895(2020-10-18). https://arxiv.org/abs/2010.08895.
|
43 |
GOSWAMI S, BORA A, YU Y, et al. Physics-informed deep neural operator networks[DB/OL]. arXiv, 2022: 05748(2020-07-08). https://arxiv.org/abs/2207.05748.
|
44 |
DOI |
45 |
KRISHNAPRIYAN A, GHOLAMI A, ZHE Shandian, et al. Characterizing possible failure modes in physics-informed neural networks[C]//Advances in Neural Information Processing Systems 34(NeurIPS 2021). Online: NeurIPS, 2021: 26548-26560.
|
46 |
DOI |
47 |
KATSIARYNA H, ALEXANDER I. Improved training of Physics-Informed neural networks with model ensembleS[DB/OL]. arXiv, 2022: 05108(2023-01-11). https://arxiv.org/pdf/2204.05108.
|
48 |
DOI |
49 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv, 2014: 6980(2017-01-30). https://arxiv.org/abs/1412.6980.
|
50 |
DOI |
51 |
DOI |
52 |
DOI |
53 |
DOI |
54 |
DOI |
55 |
DOI |
56 |
DOI |
57 |
DOI |
58 |
DOI |
59 |
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发