计算物理 ›› 2024, Vol. 41 ›› Issue (6): 772-782.DOI: 10.19596/j.cnki.1001-246x.8987

• 论文 • 上一篇    下一篇

求解时间发展方程的机器学习方法

郭嘉玮1,2(), 王涵3,4,*(), 谷同祥3   

  1. 1. 天津师范大学数学科学学院, 天津 300387
    2. 天津师范大学数学与交叉科学研究院, 天津 300387
    3. 北京应用物理与计算数学研究所, 北京 100088
    4. 北京大学应用物理与技术研究中心, 北京 100871
  • 收稿日期:2024-07-17 出版日期:2024-11-25 发布日期:2024-12-26
  • 通讯作者: 王涵
  • 作者简介:

    郭嘉玮, 博士研究生, 讲师, 研究方向为机器学习求解微分方程, E-mail:

  • 基金资助:
    国家自然科学基金(11871110); 国家自然科学基金(12122103)

Machine Learning Methods for Solving Evolution Equation

Jiawei GUO1,2(), Han WANG3,4,*(), Tongxiang GU3   

  1. 1. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
    2. Institute of Mathematics and Interdisciplinary Sciences, Tianjin Normal University, Tianjin 300387, China
    3. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
    4. HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
  • Received:2024-07-17 Online:2024-11-25 Published:2024-12-26
  • Contact: Han WANG

摘要:

近年来, 使用机器学习方法求解微分方程在不同领域受到越来越多的关注, 然而机器学习方法在求解时间发展方程上遇到许多问题。本文从数据驱动的深度学习方法和基于方程学习的深度学习方法两个方面对现阶段针对时间发展方程的机器学习求解方法进行总结, 并介绍在不同神经网络架构下针对性的求解算法。总结了使用物理信息引入的神经网络方法求解时间发展方程的训练特点与最新工作, 并对未来工作进行展望。

关键词: 神经网络方法, 机器学习方法, 时间发展方程

Abstract:

In recent years, the use of machine learning methods to solve differential equations has attracted increasing attention from researchers in different fields. However, with the deepening of the research, researchers have begun to identify numerous challenges associated with the use of machine learning methods for solving time development equations. This paper presents a summary of the machine learning methods for solving the evolution equation. First, we present a summary of data-driven methods and deep learning methods based on equation learning. Then we introduce targeted algorithms for solving the problem under different neural network architectures. Finally, this paper presents a summary of the training features and recent work on the use of PINN method for solving the evolution equation. It also provides an outlook for future work.

Key words: neural network methods, machine learning methods, evolution equations