计算物理 ›› 2024, Vol. 41 ›› Issue (5): 547-558.DOI: 10.19596/j.cnki.1001-246x.8855

• 第九届全国计算物理会议专栏 • 上一篇    下一篇

基于Ginzburg-Landau方法的快速结构复振幅展开晶体相场模型

王昆1(), 陈军2, 王裴2, 祝文军3, 钟正1   

  1. 1. 湖南大学材料科学与工程学院, 湖南 长沙 410082
    2. 北京应用物理与计算数学研究所, 北京 100094
    3. 流体物理研究所, 四川 绵阳 621900
  • 收稿日期:2023-10-30 出版日期:2024-09-25 发布日期:2024-09-14
  • 作者简介:王昆, 男, 博士, 副教授, 硕士生导师, 从事极端条件下材料力学行为机理、数值建模与模拟研究, E-mail: kwang_hnu@163.com
  • 基金资助:
    计算物理实验室基金青年项目(6142A05QN22003)

Fast Complex-amplitude Expanded Phase Field Crystal Model for Different Crystals through a Ginzburg-Landau Approach

Kun WANG1(), Jun CHEN2, Pei WANG2, Wenjun HU3, Zheng ZHONG1   

  1. 1. College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
    3. Institute of Fluid Physics, Mianyang, Sichuan 621900, China
  • Received:2023-10-30 Online:2024-09-25 Published:2024-09-14

摘要:

利用Ginzburg-Landau模型思路推广了传统复振幅扩展晶体相场(APFC)模型的发展思路, 提出一种描述不同晶体结构的简单有效方法, 即快速结构APFC模型。以方形相和矩形相为例, 系统地确定了快速结构APFC模型中与结构相关的模型参数, 并通过数值算例检验了该方法的有效性。特别是在处理矩形相的过程中, 研究发现这种方法不仅可以解决矩形相结构稳定性的问题, 还可以描述矩形相和正交层状相之间的结构相变, 证明了该模型具有描述多结构相变的能力。最后, 通过模拟研究经典的圆形晶粒转动-收缩问题, 检验了该模型对物理规律的准确预测能力, 并揭示了不同晶体对称性对晶粒转动-收缩规律的影响。

关键词: 晶体相场, Ginzburg-Landau模型, 位错, 晶界, 晶体各向异性

Abstract:

This work extends the idea of the traditional complex-amplitude expanded phase field crystal (APFC) model using the Ginzburg-Landau approach. A fast structural APFC model is proposed as a quick and effective method for describing different crystal structures. Taking square and rectangular phases as examples, we systematically determine the structure-dependent parameters in the fast structure APFC model and validates its effectiveness through numerical simulations. In particular, when dealing with rectangular phases, it is found that this method not only solves the stability problem of the rectangular phase but also describes the structural phase transition between rectangular and orthorhombic layered phases, demonstrating the capability of the model in describing multiple structural phase transitions. Finally, through simulating the classic rotation-shrinking of a circular grain, we confirm the ability of the model for correctly predicting physical laws and reveal the roles of different crystal symmetries on the rotation-shrinking behavior of the grain. The proposed method in this paper can effectively promote the application of APFC models in the simulation research of more and larger material systems.

Key words: phase field crystal, Ginzburg-Landau model, dislocation, grain boundary, crystal anisotropy

中图分类号: