计算物理 ›› 2025, Vol. 42 ›› Issue (2): 171-181.DOI: 10.19596/j.cnki.1001-246x.8862

• 研究论文 • 上一篇    下一篇

基于Cahn-Hilliard相场方程的气体动理学格式

钟豪1(), 朱炼华2, 包进1, 郭照立1,3,*()   

  1. 1. 华中科技大学能源与动力工程学院煤燃烧国家重点实验室, 湖北 武汉 430074
    2. 上海索辰信息科技股份有限公司, 上海 201204
    3. 华中科技大学数学与应用学科交叉创新研究院, 湖北 武汉 430074
  • 收稿日期:2023-11-08 出版日期:2025-03-25 发布日期:2025-04-08
  • 通讯作者: 郭照立
  • 作者简介:

    钟豪, 男, 硕士研究生, 研究方向为两相流的介观数值方法研究, E-mail:

  • 基金资助:
    华中科技大学交叉研究支持计划(2023JCYJ002)

Gas-kinetic Scheme Based on Cahn-Hilliard Phase-field Equation

Hao ZHONG1(), Lianhua ZHU2, Jin BAO1, Zhaoli GUO1,3,*()   

  1. 1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    2. Shanghai Suochen Information Technology Company Limited, Shanghai 201204, China
    3. Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2023-11-08 Online:2025-03-25 Published:2025-04-08
  • Contact: Zhaoli GUO

摘要:

在有限体积的框架下, 构造基于Cahn-Hilliard相场方程的气体动理学格式, 其界面通量由Chapman-Enskog一阶近似确定。进一步证明提出的模型可准确恢复至Cahn-Hilliard方程。通过若干算例对该模型进行测试, 并与相应的格子玻尔兹曼方法进行对比。结果表明, 该模型在界面捕捉方面具有较好的精度和数值稳定性。本文的研究拓展了气体动理学格式在相场理论的应用, 并为两相流体系统的模拟提供了方案。

关键词: 两相系统, 相场模型, 气体动理学格式, Chapman-Enskog展开

Abstract:

The gas kinetic scheme based on Cahn-Hilliard phase field equation with interfacial fluxes determined by the Chapman-Enskog first-order approximation is constructed in the framework of finite volume. It is further demonstrated that the proposed model can be accurately recovered to Cahn-Hilliard equation. The method is tested through several cases and compared with the corresponding lattice Boltzmann method. The results show that the method in this paper has excellent accuracy and numerical stability for interface trapping. The study extends application of the gas-kinetic scheme to phase-field theory and provides a new solution for the simulation of two-phase fluid systems.

Key words: two-phase system, phase field model, Gas-kinetic scheme, Chapman-Enskog expansion