计算物理 ›› 2025, Vol. 42 ›› Issue (2): 171-181.DOI: 10.19596/j.cnki.1001-246x.8862
收稿日期:
2023-11-08
出版日期:
2025-03-25
发布日期:
2025-04-08
通讯作者:
郭照立
作者简介:
钟豪, 男, 硕士研究生, 研究方向为两相流的介观数值方法研究, E-mail: M202171256@hust.edu.cn
基金资助:
Hao ZHONG1(), Lianhua ZHU2, Jin BAO1, Zhaoli GUO1,3,*(
)
Received:
2023-11-08
Online:
2025-03-25
Published:
2025-04-08
Contact:
Zhaoli GUO
摘要:
在有限体积的框架下, 构造基于Cahn-Hilliard相场方程的气体动理学格式, 其界面通量由Chapman-Enskog一阶近似确定。进一步证明提出的模型可准确恢复至Cahn-Hilliard方程。通过若干算例对该模型进行测试, 并与相应的格子玻尔兹曼方法进行对比。结果表明, 该模型在界面捕捉方面具有较好的精度和数值稳定性。本文的研究拓展了气体动理学格式在相场理论的应用, 并为两相流体系统的模拟提供了方案。
钟豪, 朱炼华, 包进, 郭照立. 基于Cahn-Hilliard相场方程的气体动理学格式[J]. 计算物理, 2025, 42(2): 171-181.
Hao ZHONG, Lianhua ZHU, Jin BAO, Zhaoli GUO. Gas-kinetic Scheme Based on Cahn-Hilliard Phase-field Equation[J]. Chinese Journal of Computational Physics, 2025, 42(2): 171-181.
图2 沿对角线平移液滴的相界面形状(Pe=5) (a) LSG-LBM;(b) GKS(实线t=0,虚线t=1T)
Fig.2 Shape of phase interface of diagonally translating droplet (Pe=5) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=1T)
图3 沿对角线平移液滴的相界面形状(Pe=5) (a) LSG-LBM; (b) GKS(实线t=0,虚线t=10T)
Fig.3 Shape of phase interface of diagonally translating droplet (Pe=5) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=10T)
图4 沿对角线平移液滴的相界面形状(Pe=2 000) (a) LSG-LBM; (b) GKS(实线t=0,虚线t=1T)
Fig.4 Shape of phase interface of diagonally translating droplet (Pe=2 000) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=1T)
图5 沿对角线平移液滴的相界面形状(Pe=2 000) (a) LSG-LBM; (b) GKS(实线t=0,虚线t=10T)
Fig.5 Shape of phase interface of diagonally translating droplet (Pe=2 000) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=10T)
Pe | |||||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.112 3 | 0.036 4 | 0.611 4 | 0.223 7 | |
50 | 0.160 3 | 0.083 7 | 0.518 0 | 0.382 5 | |
500 | 0.240 2 | 0.103 5 | 0.479 6 | 0.328 0 | |
2 000 | 0.290 4 | 0.132 9 | 0.481 6 | 0.356 4 |
表1 不同Pe数在1个周期后沿对角线平移液滴的全局误差
Table 1 Global error of translating droplets along the diagonal after 1 period with different Pe numbers
Pe | |||||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.112 3 | 0.036 4 | 0.611 4 | 0.223 7 | |
50 | 0.160 3 | 0.083 7 | 0.518 0 | 0.382 5 | |
500 | 0.240 2 | 0.103 5 | 0.479 6 | 0.328 0 | |
2 000 | 0.290 4 | 0.132 9 | 0.481 6 | 0.356 4 |
Pe | t=1T | t=10T | |||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.75 | 0.20 | 4.16 | 0.94 | |
50 | 1.01 | 0.51 | 3.41 | 1.54 | |
500 | 0.83 | 0.53 | 2.29 | 1.31 | |
2 000 | 0.81 | 0.51 | 1.76 | 1.25 |
表2 不同Pe数时1个周期和10个周期后沿对角线平移液滴的质心距离误差
Table 2 Error of center-of-mass distance along diagonal translation of droplet after 1 and 10 periods at different Pe numbers
Pe | t=1T | t=10T | |||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.75 | 0.20 | 4.16 | 0.94 | |
50 | 1.01 | 0.51 | 3.41 | 1.54 | |
500 | 0.83 | 0.53 | 2.29 | 1.31 | |
2 000 | 0.81 | 0.51 | 1.76 | 1.25 |
图7 沿对角线平移的液滴GKS和LBM方法的计算时间(Pe=500, n=10)
Fig.7 Computational time between GKS and LBM methods for along diagonal translation of droplet (Pe=500, n=10)
图9 旋转圆盘的相界面形状(Pe=5) (a) LSG-LBM;(b) GKS(实线:t=0,虚线:t=1T)
Fig.9 Shape of the phase interface of rotating disk (Pe=5) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=1T)
图10 旋转圆盘的相界面形状(Pe=50) (a) LSG-LBM; (b) GKS(实线t=0,虚线t=1T)
Fig.10 Shape of the phase interface of rotating disk(Pe=50) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=1T)
图11 旋转圆盘的相界面形状(Pe=2 000) (a) LSG-LBM; (b) GKS(实线t=0,虚线t=1T)
Fig.11 Shape of the phase interface of rotating disk (Pe=2 000) (a) LSG-LBM; (b) GKS (solid line t=0, dashed line t=1T)
Pe | |||||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.072 6 | 0.055 7 | 0.978 3 | 0.972 5 | |
50 | 0.069 6 | 0.042 4 | 0.915 0 | 0.900 9 | |
500 | 0.088 0 | 0.055 8 | 0.947 5 | 0.810 5 | |
2 000 | 1.017 0 | 0.073 2 | 4.859 2 | 0.781 6 |
表3 不同Pe数时旋转圆盘的全局误差
Table 3 Global errors of rotating discs at different Pe numbers
Pe | |||||
LSG-LBM | GKS | LSG-LBM | GKS | ||
5 | 0.072 6 | 0.055 7 | 0.978 3 | 0.972 5 | |
50 | 0.069 6 | 0.042 4 | 0.915 0 | 0.900 9 | |
500 | 0.088 0 | 0.055 8 | 0.947 5 | 0.810 5 | |
2 000 | 1.017 0 | 0.073 2 | 4.859 2 | 0.781 6 |
图12 单涡剪切流不同时刻的界面重构图(n=2) (a) t=0; (b) t=0.25T; (c) t=0.5T;(d) t=0.75T; (e) t=T
Fig.12 Interface reconfiguration at different moments of single vortex shear flow(n=2) (a) t=0; (b) t=0.25T; (c) t=0.5T; (d) t=0.75T; (e) t=T
图13 单涡剪切流不同时刻的界面重构图(n=4) (a) t=0; (b) t=0.25T; (c) t=0.5T;(d) t=0.75T; (e) t=T
Fig.13 Interface reconfiguration at different moments of single vortex shear flow (n=4) (a) t=0; (b) t=0.25T; (c) t=0.5T; (d) t=0.75T; (e)t=T
图14 (a) 一个周期内序参量守恒误差随时间的变化;(b) L2相对误差随周期数的变化
Fig.14 (a) Order parameter conservation errors over time in one period; (b) L2 relative error with number of periods
Pe | ||
n=2 | n=4 | |
5 | 0.038 2 | 0.112 9 |
50 | 0.048 3 | 0.089 6 |
500 | 0.065 5 | 0.144 3 |
2 000 | 0.052 9 | 0.140 2 |
表4 一个周期时单涡剪切流在不同Pe数下的相对误差
Table 4 Relative error of single vortex shear flow at different Pe numbers after one period
Pe | ||
n=2 | n=4 | |
5 | 0.038 2 | 0.112 9 |
50 | 0.048 3 | 0.089 6 |
500 | 0.065 5 | 0.144 3 |
2 000 | 0.052 9 | 0.140 2 |
图15 3D单涡剪切流不同时刻的界面重构图(a) t=0; (b) t=0.25T; (c) t=0.5T;(d) t=0.75T; (e) t=T
Fig.15 Interfacial reconfiguration of 3D single-vortex shear flow at different moments of flow (a) t=0; (b) t=0.25T; (c) t=0.5T; (d) t=0.75T; (e) t=T
1 |
|
2 |
王昭, 严红. 基于气液相界面捕捉的统一气体动理学格式[J]. 力学学报, 2018, 50 (4): 711- 721.
|
3 |
DOI |
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
DOI |
8 |
冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟[J]. 计算物理, 2020, 37 (4): 439- 447.
|
9 |
娄钦, 汤升, 王浩原. 基于格子Boltzmann大密度比模型的多孔介质内气泡动力学行为数值模拟[J]. 计算物理, 2021, 38 (3): 289- 300.
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
|
19 |
DOI |
20 |
|
21 |
DOI |
22 |
DOI |
23 |
DOI |
24 |
李洋, 苏婷, 梁宏, 等. 耦合界面力的两相流相场格子Boltzmann模型[J]. 物理学报, 2018, 67 (22): 224701.
|
25 |
|
26 |
DOI |
27 |
娄钦, 臧晨强, 王浩原, 等. 微通道内不混溶气液两相二氧化碳界面动力学行为的格子Boltzmann研究[J]. 计算物理, 2019, 36 (2): 153- 164.
DOI |
28 |
DOI |
29 |
|
30 |
DOI |
31 |
|
32 |
DOI |
33 |
XU K. Gas-kinetic schemes for unsteady compressible flow simulations[C]//Computational Fluid Dynamics, Annual Lecture Series, 29th, Rhode-Saint-Genese. Belgium, 1998.
|
34 |
DOI |
35 |
DOI |
36 |
DOI |
37 |
|
38 |
DOI |
39 |
DOI |
40 |
DOI |
41 |
DOI |
42 |
|
43 |
DOI |
44 |
|
45 |
佘邦伟, 赵桂萍. 可压缩非守恒型两相流模型的GKS方法[J]. 计算物理, 2012, 29 (1): 51- 57.
|
46 |
|
47 |
|
[1] | 徐云, 龙瑶, 向美珍, 陈军. 非均质炸药的Eshelby夹杂理论相场方法[J]. 计算物理, 2024, 41(5): 559-568. |
[2] | 魏雪丹, 戴厚平, 李梦军, 郑洲顺. 一维空间Riesz分数阶对流扩散方程的格子Boltzmann方法[J]. 计算物理, 2021, 38(6): 683-692. |
[3] | 段雅丽, 陈先进, 孔令华. Burgers-Korteweg-de Vries复合方程的格子Boltzmann方法模拟[J]. 计算物理, 2015, 32(6): 639-648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发