计算物理 ›› 1991, Vol. 8 ›› Issue (1): 68-78.
• 论文 • 上一篇 下一篇
胡家赣
收稿日期:
出版日期:
发布日期:
Hu Jiagan
Received:
Online:
Published:
摘要: 本文在A为H阵的情况下给出了一个较前人给出的更为简单和具体的‖A-1‖x的上界,本文还定义了"等对角优势矩阵",并证明了若A为具有等对角优势δ的等对角优势矩阵(亦即|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1‖x=(A-1)ij=1/δ,∀i,利用等对角优势M阵,可以求任何H阵A的‖A-1‖x的上界,最后我们还给出了几个有趣的例子以说明本文的一些定理。
关键词: 等对角优势矩阵, 对角优势矩阵, 逆矩阵的最大模
Abstract: A simpler and more concrete estimate of the upper bound of ‖A-1‖∞ than those in previous papers is given, when A is an H-matrix and the equidiagonal dominant matrix is defined.We prove that if A is an equidiagonal-dominant M-matrix with equidiagonal-dominanceδ|i.e.|a11-||a11|=δ,∀i),则ρ(A-1)=‖A-1‖x=(A-1)ij=1/δ,∀i, By use of equidiagonal-dominant matrix the upper bound of ‖A-1‖x for any H-matrx may be found. Several interesting examples are given to illustrate our theorems.
Key words: equidiagonal dominant matrix, diagonal dominant matrix, maximum norm of inverse matrix
胡家赣. ‖A-1‖∞的上界和等对角优势[J]. 计算物理, 1991, 8(1): 68-78.
Hu Jiagan. UPPER BOUND OF ‖A-1‖∞ AND EQUIDIAGONAL DOMINANCE[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 8(1): 68-78.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y1991/V8/I1/68