计算物理 ›› 1995, Vol. 12 ›› Issue (2): 203-206.
• 论文 • 上一篇 下一篇
陈国新1, 张承福2
收稿日期:
修回日期:
出版日期:
发布日期:
基金资助:
Cheng Guoxin1, Zhang Chengfu2
Received:
Revised:
Online:
Published:
摘要: 深入分析了BP(Back-Propagation)算法的缺陷,在BP算法的基础上,提出逐层训练多层网络的快速算法,主要精神是:a)逐层地训练多层网络而不是一起训练;b)对隐单元层给以具体指导;c)根据具体问题给予合适的权重分配规则即合适的"能量函数";d)保持BP算法的优点。对一些问题的训练速度与BP算法比较有几个数量级的提高。这一算法还可对多层网络的运行机制作一些研究.
关键词: 人工神经网络, BP算法, 多层网络, 逐层训练
Abstract: Artificial-Neural Network (ANN) is a complex network system composed of many simple elements connected extensively each other and can be regarded as a simulation or abstraction of biological neural system. Multi-Layer Network (MLN) is one of the most important ANN. A essential algorithm to train MLN is BP (Back-Propagation) algorithm. Based on BP algorithm, a hgih-speed algorithm-train MLN layer-by-layer algorithm is proposed with main points:4) train MLN layer-by-layer instead of all together; b) giving instruction to hidden units; c) giving appropriate "energy function' according to specific Problems; d) preserving the merits of BP algorithm. The simulation results increase by orders of magnitude in training-speed. This algorithm applies also some research on running mechanism of MLN.
Key words: ANN, BP algorithm, MLN, training layer-by-layer
中图分类号:
O241
陈国新, 张承福. 一种快速分类的神经元网络算法[J]. 计算物理, 1995, 12(2): 203-206.
Cheng Guoxin, Zhang Chengfu. A HIGH-SPEED NEURAL NETWORKS ALGORITHM ON CLASSIFICATION-PROBLEM[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 12(2): 203-206.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y1995/V12/I2/203