计算物理 ›› 1999, Vol. 16 ›› Issue (3): 243-252.

• 论文 • 上一篇    下一篇

半拉格朗日方案计算平流过程的数学研究

王必正   

  1. 中国科学院大气物理研究所, 大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029
  • 收稿日期:1997-11-20 修回日期:1998-04-20 出版日期:1999-05-25 发布日期:1999-05-25
  • 作者简介:王必正,男,32,博士,助研
  • 基金资助:
    国家自然科学基金(49805005)和攀登95-预-21的联合资助

Mathamatical study on semi-langrangian advection computational scheme

Wang Bizheng   

  1. LASG. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
  • Received:1997-11-20 Revised:1998-04-20 Online:1999-05-25 Published:1999-05-25

摘要: 首先利用一阶偏微分方程的特征线理论,证明了特征线的存在性和唯一性。其次,利用В. Канторович的泛函方法,系统解决了寻找出发点的问题,证明了出发点是唯一的和存在的,并给出了误差估计。最后,根据微分几何和计算几何,对于一维保形插值采用了非线性样条函数,而对于二维保形插值采用Lagrangian、双立方样条和Coons曲面。

关键词: 特征线, 出发点, 保形插值

Abstract: Mathematical study on semi_Lagrangian advection computational scheme is carried out. Firstly, by the characteristic curves of the partial differential equation of first order, the existence and the uniqueness of the characteristic curves are proven. Secondly, by Picard's and В. Канторович's mechods, the search for the departure point is sloved systematically. At the end, from differential and computational geometry, one_dimensional shape perserving interpolation on the basis of non_linear spline is proposed, and two dimensional shape perserving interpolation on the basis of Lagrangian, bicubic spline and Coon's surfaces is introduced.

Key words: characteristic curves, departure point, shape-presverving interpolation

中图分类号: