计算物理 ›› 2000, Vol. 17 ›› Issue (6): 611-618.
• 论文 • 上一篇 下一篇
蔚喜军, 符鸿源
收稿日期:
修回日期:
出版日期:
发布日期:
作者简介:
基金资助:
YU Xi-jun, FU Hong-yuan
Received:
Revised:
Online:
Published:
摘要: 利用双曲守恒律的Hamilton-Jacobi方程形式,应用Taylor公式与Galerkin有限元给出了求解双曲守恒律的计算方法。采用TVD差分格式的构造思想,对数值通量作修正,在等距网格情形下有限元方法得到的计算格式满足TVD性质,并给出了数值例子。
关键词: 双曲型守恒律, Hamilton-Jacobi方程, Taylor-Galerkin有限元方法
Abstract: A scheme is hroposed for solving hyperboilc conservation laws by the Taylor-Galerkin finite element method. The scheme is obtained by discretizing hyperbolic conservation laws related to the Hamilton-Jacobi's equations. The scheme satisfies the TVD properties under the isometry meshes by modifying the numerical flux, whose idea is from the difference scheme construction. Numerical examples are given.
Key words: hyperbolic conservation laws, Hamilton-Jacobi equations, Taylor-Galerkin finite element method
中图分类号:
O35
蔚喜军, 符鸿源. 双曲守恒律的Taylor-Galerkin有限元方法[J]. 计算物理, 2000, 17(6): 611-618.
YU Xi-jun, FU Hong-yuan. A TAYLOR-GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(6): 611-618.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y2000/V17/I6/611