计算物理 ›› 2005, Vol. 22 ›› Issue (6): 90-94.

• 研究简报 • 上一篇    

稳态问题混合边界积分方程的高精度求积法与分裂外推

黄晋1, 张黔川2, 吕涛2   

  1. 1. 电子科技大学应用数学学院, 四川 成都 610054;
    2. 四川大学数学学院, 四川 成都 610064
  • 收稿日期:2004-06-10 修回日期:2005-01-17 出版日期:2005-11-25 发布日期:2005-11-25
  • 作者简介:黄晋(1961-),男,四川广元,教授,博士,主要从事计算数学方面的研究.
  • 基金资助:
    国家自然科学基金(1071073)资助项目

A Quadrature Method and its Splitting Extraplation for Mixed Boundary Integral Equations of Stable Problems

HUANG Jin1, ZHANG Qian-chuan2, LU Tao2   

  1. 1. Univerisity of Electronic & Science Technology of China, Chengdu 610054, China;
    2. Mathematical College, Sichuan University, Chengdu 610064, China
  • Received:2004-06-10 Revised:2005-01-17 Online:2005-11-25 Published:2005-11-25

摘要: 提出了求积法解稳态问题的混合边界积分方程,它拥有高精度,低复杂度.通过并行地解粗网格上的离散方程,根据误差的多参数渐近展开,应用分裂外推算法得到高精度的近似解,同时获得后验误差估计.

关键词: 稳态问题, 混合边界积分方程, 求积法, 分裂外推

Abstract: We present a quadrature method for mixed boundary integral equations of stable problems,which provides high accuracy and less complexity.Discrete equations are solved in parallel according to the coarse mesh partitions.Approximations with high accuracy are obtained by splitting extrapolation methods based on multivariate asymptotic expansion of errors.Besides,a posteriori asymptotic error estimate is derived.

Key words: stable problem, mixed boundary integral equation, quadrature method, splitting extrapolation

中图分类号: