计算物理 ›› 2011, Vol. 28 ›› Issue (2): 259-267.
• 论文 • 上一篇 下一篇
傅德月1, 彭晓东2
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
作者简介:
基金资助:
FU Deyue1, PENG Xiaodong2
Received:
Revised:
Online:
Published:
摘要: 利用函数的高阶空间导数值构建其高次插值,得到高阶CIP(Constrained Interpolation Profile)数值算法,并在此基础上模拟研究等离子体物理中著名的伏拉索夫-泊松(Vlasov-Poisson)方程相关物理问题.高阶CIP数值方法具有更高数值精度,从而可以在同等精度的情况下减少计算格点数,加速数值计算速度.
关键词: CIP数值方法, 高阶插值, 伏拉索夫-泊松方程
Abstract: A high-order CIP(Constrained Interpolation Profile,HCIP) method is developed by constructing a high-order interpolation function based on high-order spatial derivatives.Numerical errors of both HCIP scheme and a standard CIP(SCIP) scheme proposed by Yabe and et al are studied.With HCIP method,we investigate numerically physical problems in the famous Vlasov-Poisson equation,such as Landau damping and two-stream instability.It shows that HCIP method is a fifth-order accuracy scheme.Its accuracy is higher than that of SCIP method.Dynamical evolution due to Landau damping in an electrostatic plasma simulated by HCIP method agrees well with previous results.By reducing the number of grids calculation speed is increased with same accuracy.
Key words: CIP method, high-order interpolation, Vlasov-Poisson equation
中图分类号:
O241.82
傅德月, 彭晓东. 高阶CIP数值方法及其在相关物理问题中的应用[J]. 计算物理, 2011, 28(2): 259-267.
FU Deyue, PENG Xiaodong. High-order CIP Numerical Method and Applications in Vlasov-Poisson Equation[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(2): 259-267.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.cjcp.org.cn/CN/
http://www.cjcp.org.cn/CN/Y2011/V28/I2/259