计算物理 ›› 2014, Vol. 31 ›› Issue (1): 75-84.

• 论文 • 上一篇    下一篇

支持向量机和神经网络在粗糙面参数反演中的比较

苟雪银, 郭立新, 张连波   

  1. 西安电子科技大学理学院, 陕西 西安 710071
  • 收稿日期:2013-04-23 修回日期:2013-08-07 出版日期:2014-01-25 发布日期:2014-01-25
  • 作者简介:苟雪银(1989-),女,硕士,主要从事粗糙面电磁散射及相关参数反演研究,E-mail:gouxueyinqrio@126.com
  • 基金资助:
    国家杰出青年科学基金(61225002);高等学校博士学科点专项科研基金(20100203110016)资助项目

Support Vector Machine and Neural Network in Inversion of Rough Surface Parameters

GOU Xueyin, GUO Lixin, ZHANG Lianbo   

  1. School of Science, Xidian University, Xi'an 710071, China
  • Received:2013-04-23 Revised:2013-08-07 Online:2014-01-25 Published:2014-01-25

摘要: 首先介绍支持向量机和神经网络方法及其在内部网络训练上的不同.分别利用支持向量机和神经网络对高斯粗糙面的均方根高度和相关长度进行反演.通过仿真结果和误差对比分析,发现在小样本情况下,支持向量机的反演结果比神经网络好,而在具有大量样本的情况下,神经网络的反演精度有显著提高,而且反演时间比支持向量机少很多.

关键词: 支持向量机, 粗糙面, 神经网络, 均方根高度, 相关长度, 反演

Abstract: Support vector machine and neural network theory and internal network training differences of them are studied.Root mean square height and correlation length of Gauss rough surface are inversed by support vector machine and neural network,respectively.Simulation results and inversing errors show that in the case of small numbers of rough surface sample inversion of support vector machine are better than that of neural network,while in the case of sufficient numbers of rough surface samples inversion accuracy of neural network increases and time of inversion by neural network is much less than that of support vector machine.

Key words: support vector machine, rough surface, neural network, root mean square height, correlation length, inversion

中图分类号: