计算物理 ›› 2024, Vol. 41 ›› Issue (5): 619-629.DOI: 10.19596/j.cnki.1001-246x.8793
收稿日期:
2023-07-03
出版日期:
2024-09-25
发布日期:
2024-09-14
通讯作者:
余云龙
作者简介:
刘杏康, 男, 硕士研究生, 研究方向为偏微分方程数值解, E-mail: 2130011010@st.btbu.edu.cn
基金资助:
Xingkang LIU1(), Xingding CHEN1, Yunlong YU2,*(
)
Received:
2023-07-03
Online:
2024-09-25
Published:
2024-09-14
Contact:
Yunlong YU
摘要:
基于几何型扩展有限元离散, 研究含静态裂缝线弹性问题的高效压缩预条件算法。不仅构造适用于含裂缝线弹性问题的压缩子空间矩阵, 而且给出压缩点的选点原则。为进一步提高计算效率, 将该压缩技巧以乘性的方式与"裂尖型"区域分解预条件子相结合, 提出一类高效的自适应压缩预条件共轭梯度算法, 该算法能同时消去迭代求解中的高频误差和低频误差, 数值实验验证了算法的有效性。
中图分类号:
刘杏康, 陈星玎, 余云龙. 含裂缝线弹性问题的压缩预条件共轭梯度算法[J]. 计算物理, 2024, 41(5): 619-629.
Xingkang LIU, Xingding CHEN, Yunlong YU. Deflated Preconditioned Conjugate Gradient Solvers for Linear Elastic Crack Problems[J]. Chinese Journal of Computational Physics, 2024, 41(5): 619-629.
图2 “裂尖型”区域分解示意图(蓝色和黑色子区域分别代表裂尖子区域和常规子区域。)
Fig.2 Schematic of the "crack tip" domain decomposition (The blue subdomain denotes the "crack tip" subdomain, and the black subdomains denote "regular" subdomains.)
图4 几何型XFEM压缩子空间结点选取示意图(a) 网格剖分为39×39;(b) 只选择Heaviside增强结点;(c) 只选择裂尖增强结点;(d) 选择所有增强结点((b)~(d)为网格局部放大后的不同选点策略示意图。)
Fig.4 Schematic of deflation nodes selections in geometric XFEM (a) the mesh is dissected into 39×39; (b) only Heaviside enhancement nodes are selected; (c) only crack-tip enhancement nodes are selected; (d) all enhancement nodes are selected ((b)-(d) are the schematic representations of the different point selection strategies after local magnification.)
网格剖分 | CGJac | ADCGH | ADCGtip | ADCGHtip |
19×19 | 28 | 21 | 27 | 22 |
39×39 | 41 | 32 | 39 | 31 |
59×59 | 50 | 38 | 48 | 38 |
79×79 | 58 | 44 | 55 | 43 |
99×99 | 64 | 49 | 61 | 48 |
119×119 | 69 | 53 | 66 | 52 |
139×139 | 74 | 57 | 71 | 55 |
表1 选择不同压缩点的迭代次数
Table 1 The number of iterations for different selection of deflated nodes
网格剖分 | CGJac | ADCGH | ADCGtip | ADCGHtip |
19×19 | 28 | 21 | 27 | 22 |
39×39 | 41 | 32 | 39 | 31 |
59×59 | 50 | 38 | 48 | 38 |
79×79 | 58 | 44 | 55 | 43 |
99×99 | 64 | 49 | 61 | 48 |
119×119 | 69 | 53 | 66 | 52 |
139×139 | 74 | 57 | 71 | 55 |
网格剖分 | ADCGH | ADCGtip | ADCGHtip |
19×19 | 16 | 12 | 28 |
39×39 | 32 | 52 | 84 |
59×59 | 48 | 112 | 160 |
79×79 | 64 | 192 | 256 |
99×99 | 80 | 308 | 388 |
119×119 | 96 | 448 | 544 |
139×139 | 112 | 608 | 720 |
表2 不同选点策略所包含的结点个数
Table 2 The number of nodes included in different nodes selection strategies
网格剖分 | ADCGH | ADCGtip | ADCGHtip |
19×19 | 16 | 12 | 28 |
39×39 | 32 | 52 | 84 |
59×59 | 48 | 112 | 160 |
79×79 | 64 | 192 | 256 |
99×99 | 80 | 308 | 388 |
119×119 | 96 | 448 | 544 |
139×139 | 112 | 608 | 720 |
网格剖分 | CondNPre | CondJac | CondAS | CondRAS |
19×19 | 2.25×106 | 2.34×105 | 8.24×102 | 6.75×102 |
39×39 | 1.62×109 | 6.81×107 | 1.04×105 | 1.02×105 |
59×59 | 3.05×1010 | 1.44×109 | 1.23×106 | 1.23×106 |
79×79 | 1.86×1011 | 1.08×1010 | 7.77×106 | 7.76×106 |
99×99 | 1.43×1012 | 1.35×1011 | 5.08×107 | 5.07×107 |
表3 不同预条件子处理后M-1A的条件数(δ=2)
Table 3 The condition number of M-1A after different preconditioning (δ=2)
网格剖分 | CondNPre | CondJac | CondAS | CondRAS |
19×19 | 2.25×106 | 2.34×105 | 8.24×102 | 6.75×102 |
39×39 | 1.62×109 | 6.81×107 | 1.04×105 | 1.02×105 |
59×59 | 3.05×1010 | 1.44×109 | 1.23×106 | 1.23×106 |
79×79 | 1.86×1011 | 1.08×1010 | 7.77×106 | 7.76×106 |
99×99 | 1.43×1012 | 1.35×1011 | 5.08×107 | 5.07×107 |
网格剖分 | ADCGJac | ADCGEAS | ADCGERAS | ADCGAS | ADCGRAS |
19×19 | 21 | 3 | 3 | 3 | 3 |
39×39 | 32 | 5 | 5 | 5 | 5 |
59×59 | 38 | 7 | 7 | 9 | 10 |
79×79 | 44 | 9 | 10 | 11 | 12 |
99×99 | 49 | 13 | 13 | 16 | 18 |
119×119 | 53 | 13 | 16 | 20 | 22 |
139×139 | 57 | 15 | 17 | 23 | 25 |
表4 M-1取不同预条件子时,ADCG算法迭代步数(重叠度δ=2,E代表精确求解常规子区域。)
Table 4 The number of iterations of ADCG method using different preconditioners M-1 (Overlap δ=2 and E denotes exact solution in the regular domain.)
网格剖分 | ADCGJac | ADCGEAS | ADCGERAS | ADCGAS | ADCGRAS |
19×19 | 21 | 3 | 3 | 3 | 3 |
39×39 | 32 | 5 | 5 | 5 | 5 |
59×59 | 38 | 7 | 7 | 9 | 10 |
79×79 | 44 | 9 | 10 | 11 | 12 |
99×99 | 49 | 13 | 13 | 16 | 18 |
119×119 | 53 | 13 | 16 | 20 | 22 |
139×139 | 57 | 15 | 17 | 23 | 25 |
网格剖分 | δ=1 | δ=2 | δ=3 | |||||
ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | |||
19×19 | 4 | 3 | 3 | 3 | 3 | 3 | ||
39×39 | 5 | 5 | 5 | 5 | 5 | 5 | ||
59×59 | 9 | 7 | 7 | 7 | 7 | 7 | ||
79×79 | 9 | 14 | 9 | 10 | 9 | 10 | ||
99×99 | 15 | 16 | 13 | 13 | 11 | 13 | ||
119×119 | 17 | 18 | 13 | 16 | 13 | 14 | ||
139×139 | 19 | 19 | 15 | 17 | 13 | 15 |
表5 取不同重叠度δ时,ADCG算法迭代步数
Table 5 The number of iterations of ADCG method with different overlap δ
网格剖分 | δ=1 | δ=2 | δ=3 | |||||
ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | |||
19×19 | 4 | 3 | 3 | 3 | 3 | 3 | ||
39×39 | 5 | 5 | 5 | 5 | 5 | 5 | ||
59×59 | 9 | 7 | 7 | 7 | 7 | 7 | ||
79×79 | 9 | 14 | 9 | 10 | 9 | 10 | ||
99×99 | 15 | 16 | 13 | 13 | 11 | 13 | ||
119×119 | 17 | 18 | 13 | 16 | 13 | 14 | ||
139×139 | 19 | 19 | 15 | 17 | 13 | 15 |
网格剖分 | 5×5 | 7×7 | 9×9 | |||||
CGERAS | CGRAS | CGERAS | CGRAS | CGERAS | CGRAS | |||
39×39 | 21 | 23 | 28 | 29 | 27 | 31 | ||
59×59 | 25 | 27 | 30 | 32 | 35 | 42 | ||
79×79 | 29 | 37 | 33 | 48 | 39 | 60 | ||
99×99 | 32 | 42 | 37 | 56 | 43 | 86 | ||
119×119 | 36 | 43 | 39 | 57 | 48 | 93 | ||
139×139 | 38 | 60 | 43 | 68 | 48 | 101 |
表6 多子区域划分下M RAS-1预条件CG算法的迭代步数
Table 6 The number of iterations for M RAS-1 preconditioned CG method with multi-subdomains
网格剖分 | 5×5 | 7×7 | 9×9 | |||||
CGERAS | CGRAS | CGERAS | CGRAS | CGERAS | CGRAS | |||
39×39 | 21 | 23 | 28 | 29 | 27 | 31 | ||
59×59 | 25 | 27 | 30 | 32 | 35 | 42 | ||
79×79 | 29 | 37 | 33 | 48 | 39 | 60 | ||
99×99 | 32 | 42 | 37 | 56 | 43 | 86 | ||
119×119 | 36 | 43 | 39 | 57 | 48 | 93 | ||
139×139 | 38 | 60 | 43 | 68 | 48 | 101 |
网格剖分 | ADCGJac | 5×5 | 7×7 | 9×9 | |||||
ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ||||
39×39 | 32 | 11 | 11 | 15 | 14 | 16 | 15 | ||
59×59 | 38 | 14 | 13 | 16 | 19 | 18 | 20 | ||
79×79 | 44 | 13 | 15 | 16 | 16 | 20 | 20 | ||
99×99 | 49 | 14 | 14 | 17 | 17 | 25 | 25 | ||
119×119 | 53 | 15 | 15 | 18 | 18 | 27 | 27 | ||
139×139 | 57 | 20 | 20 | 19 | 19 | 27 | 27 |
表7 多子区域划分下采用不同预条件子的迭代步数
Table 7 The number of iterations for different preconditioners with multi-subdomains
网格剖分 | ADCGJac | 5×5 | 7×7 | 9×9 | |||||
ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ADCGEAS | ADCGERAS | ||||
39×39 | 32 | 11 | 11 | 15 | 14 | 16 | 15 | ||
59×59 | 38 | 14 | 13 | 16 | 19 | 18 | 20 | ||
79×79 | 44 | 13 | 15 | 16 | 16 | 20 | 20 | ||
99×99 | 49 | 14 | 14 | 17 | 17 | 25 | 25 | ||
119×119 | 53 | 15 | 15 | 18 | 18 | 27 | 27 | ||
139×139 | 57 | 20 | 20 | 19 | 19 | 27 | 27 |
网格剖分 | ADCGJac | 5×5 | 7×7 | 9×9 | |||||
ADCGAS | ADCGRAS | ADCGAS | ADCGRAS | ADCGAS | ADCGRAS | ||||
39×39 | 32 | 11 | 11 | 14 | 14 | 16 | 16 | ||
59×59 | 38 | 12 | 14 | 17 | 17 | 18 | 21 | ||
79×79 | 44 | 14 | 13 | 16 | 16 | 20 | 20 | ||
99×99 | 49 | 16 | 14 | 17 | 17 | 25 | 25 | ||
119×119 | 53 | 21 | 15 | 21 | 21 | 29 | 26 | ||
139×139 | 57 | 22 | 20 | 22 | 22 | 28 | 27 |
表8 多子区域划分下采用不同预条件子的迭代步数(常规子区域采用ILU非精确求解。)
Table 8 The number of iterations for different preconditioners with multi-subdomains (Inexact solutions using ILU are used in the regular domain.)
网格剖分 | ADCGJac | 5×5 | 7×7 | 9×9 | |||||
ADCGAS | ADCGRAS | ADCGAS | ADCGRAS | ADCGAS | ADCGRAS | ||||
39×39 | 32 | 11 | 11 | 14 | 14 | 16 | 16 | ||
59×59 | 38 | 12 | 14 | 17 | 17 | 18 | 21 | ||
79×79 | 44 | 14 | 13 | 16 | 16 | 20 | 20 | ||
99×99 | 49 | 16 | 14 | 17 | 17 | 25 | 25 | ||
119×119 | 53 | 21 | 15 | 21 | 21 | 29 | 26 | ||
139×139 | 57 | 22 | 20 | 22 | 22 | 28 | 27 |
1 | 徐小文, 莫则尧, 胡少亮, 等. 特征修正并行预条件算法框架[J]. 计算物理, 2024, 41 (1): 64- 74. |
2 | 杜旭林, 程林松, 牛烺昱, 等. 考虑水力压裂缝和天然裂缝动态闭合的三维离散缝网数值模拟[J]. 计算物理, 2022, 39 (4): 453- 464. |
3 |
COLOMBO D , GIGLIO M . A methodology for automatic crack propagation modelling in planar and shell FE models[J]. Engineering Fracture Mechanics, 2006, 73 (4): 490- 504.
DOI |
4 | 余天堂. 扩展有限单元法——理论、应用及程序[M]. 北京: 科学出版社, 2014: 1- 12. |
5 |
BELYTSCHKO T , BLACK T . Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45 (5): 601- 620.
DOI |
6 |
MOËS N , DOLBOW J , BELYTSCHKO T . A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46 (1): 131- 150.
DOI |
7 |
DAUX C , MOËS N , DOLBOW J , et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2000, 48 (12): 1741- 1760.
DOI |
8 | MELENK J M , BABUŠKA I . The partition of unity finite element method: Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139 (1/4): 289- 314. |
9 |
BABUŠKA I , BANERJEE U . Stable generalized finite element method (SGFEM)[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 201/204, 91- 111.
DOI |
10 |
GUPTA V , DUARTE C A , BABUŠKA I , et al. A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266, 23- 39.
DOI |
11 |
ZHANG Qinghui , BABUŠKA I , BANERJEE U . Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 476- 502.
DOI |
12 |
TIAN Rong , WEN Longfei , WANG Lixiang . Three-dimensional improved XFEM (IXFEM) for static crack problems[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343, 339- 367.
DOI |
13 |
MENK A , BORDAS S P A . A robust preconditioning technique for the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2011, 85 (13): 1609- 1632.
DOI |
14 |
BERGER-VERGIAT L , WAISMAN H , HIRIYUR B , et al. Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (3): 311- 328.
DOI |
15 |
CHEN Xingding , CAI Xiaochuan . Effective two-level domain decomposition preconditioners for elastic crack problems modeled by extended finite element method[J]. Communications in Computational Physics, 2020, 28 (4): 1561- 1584.
DOI |
16 |
AGATHOS K , DODWELL T , CHATZI E , et al. An adapted deflated conjugate gradient solver for robust extended/generalised finite element solutions of large scale, 3D crack propagation problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395, 114937.
DOI |
17 |
SAAD Y , YEUNG M , ERHEL J , et al. A deflated version of the conjugate gradient algorithm[J]. SIAM Journal on Scientific Computing, 2000, 21 (5): 1909- 1926.
DOI |
18 |
NICOLAIDES R A . Deflation of conjugate gradients with applications to boundary value problems[J]. SIAM Journal on Numerical Analysis, 1987, 24 (2): 355- 365.
DOI |
19 | TANG J M, NABBEN R, VUIK C, et al. Theoretical and numerical comparison of various projection methods derived from deflation, domain decomposition and multigrid methods: REPORT 07-04[R]. Delft: Delft University of Technology, 2007. |
20 |
PARKS M L , DE STURLER E , MACKEY G , et al. Recycling Krylov subspaces for sequences of linear systems[J]. SIAM Journal on Scientific Computing, 2006, 28 (5): 1651- 1674.
DOI |
21 |
DIAZ CORTES G B , VUIK C , JANSEN J D . On POD-based deflation vectors for DPCG applied to porous media problems[J]. Journal of Computational and Applied Mathematics, 2018, 330, 193- 213.
DOI |
22 | 李开泰, 黄艾香, 黄庆怀. 有限元方法及其应用[M]. 北京: 科学出版社, 2006: 54- 64. |
23 |
AUBRY R , MUT F , DEY S , et al. Deflated preconditioned conjugate gradient solvers for linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2011, 88 (11): 1112- 1127.
DOI |
24 |
CAI Xiaochuan , SARKIS M . A restricted additive schwarz preconditioner for general sparse linear systems[J]. SIAM Journal on Scientific Computing, 1999, 21 (2): 792- 797.
DOI |
25 | 范鹤潇, 陈星玎. 一类求解含静态裂缝线弹性问题的预条件扩展有限元方法[J]. 计算物理, 2024, 41 (2): 151- 160. |
[1] | 范鹤潇, 陈星玎. 一类求解含静态裂缝线弹性问题的预条件扩展有限元方法[J]. 计算物理, 2024, 41(2): 151-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发