计算物理 ›› 2024, Vol. 41 ›› Issue (2): 258-267.DOI: 10.19596/j.cnki.1001-246x.8677
收稿日期:
2022-12-09
出版日期:
2024-03-25
发布日期:
2024-04-03
通讯作者:
王秋玲
作者简介:
朱璋元,男,硕士研究生,研究方向为交通复杂网络,E-mail:15609127515@163.com
基金资助:
Zhangyuan ZHU(), Qiuling WANG(
)
Received:
2022-12-09
Online:
2024-03-25
Published:
2024-04-03
Contact:
Qiuling WANG
摘要:
为帮助网络系统在级联失效后尽快以合理投入实现恢复, 采用耦合映象格子作为恢复动力学模型基础, 将级联失效作用下的失效状态、耦合系数等作为恢复动力学输入, 建模过程中添加外部恢复力及内部耦合作用形成恢复动力学方法, 与未考虑接续性的3组网络恢复方法相比, 恢复效果分别提升了46.7%、47.9%和66.7%。在6组不同网络上的仿真实验结果表明: 本方法能拟合现实恢复场景, 并能克服网络在层级、规模、建网方法等方面的差异; 在三层交通网络中, 初始恢复比例对恢复程度的边际贡献率可达26.8%, 恢复耦合系数为0.5且首次恢复10%的节点时, 网络恢复程度最高达到86.4%;该恢复动力学方法可有效刻画多种网络的恢复行为。
中图分类号:
朱璋元, 王秋玲. 考虑级联失效与恢复接续性的复杂网络恢复动力学[J]. 计算物理, 2024, 41(2): 258-267.
Zhangyuan ZHU, Qiuling WANG. Complex Network Restoration Dynamics Method Considering Continuity between Cascading Failure and Restoration[J]. Chinese Journal of Computational Physics, 2024, 41(2): 258-267.
图1 失效网络的恢复动力学过程(a)失效稳定;(b)恢复开始;(c)恢复进行;(d)恢复结束
Fig.1 Dynamic process of network restoration from failure (a) stable failure state; (b) start of restoration; (c) process of restoration; (d) end of restoration
网络属性 | 方法 | RL值 |
节点数=500 平均度=4 | 本文 | 2.43 |
Ref.[ | 4.56 | |
节点数=1 000 平均度=6 | 本文 | 2.49 |
Ref.[ | 4.78 | |
Ref.[ | 7.48 |
表1 对照实验结果
Table 1 Comparative experimental results
网络属性 | 方法 | RL值 |
节点数=500 平均度=4 | 本文 | 2.43 |
Ref.[ | 4.56 | |
节点数=1 000 平均度=6 | 本文 | 2.49 |
Ref.[ | 4.78 | |
Ref.[ | 7.48 |
参数 | 符号 | 取值 |
节点初始状态 | xi(t0) | 0.7 |
结构耦合系数 | ε1 | 0.3 |
失效仿真步长 | c1 | 100 |
指标比例系数 | ω1 | 0.5 |
恢复节点比例 | o | 10% |
恢复耦合系数 | εr | 0.3 |
时间容忍度 | T1 | 3 |
恢复仿真步长 | c2 | 100 |
表2 初始参数设置
Table 2 Initial parameter setting
参数 | 符号 | 取值 |
节点初始状态 | xi(t0) | 0.7 |
结构耦合系数 | ε1 | 0.3 |
失效仿真步长 | c1 | 100 |
指标比例系数 | ω1 | 0.5 |
恢复节点比例 | o | 10% |
恢复耦合系数 | εr | 0.3 |
时间容忍度 | T1 | 3 |
恢复仿真步长 | c2 | 100 |
网络编号 | 节点数 | 连边数 | 平均度 | 平均聚类系数 |
① | 356 | 10 657 | 29.935 | 0.56 |
② | 90 | 488 | 5.422 | 0.25 |
③ | 92 | 1 554 | 16.891 | 0.54 |
表3 网络拓扑参数
Table 3 Network topology parameters
网络编号 | 节点数 | 连边数 | 平均度 | 平均聚类系数 |
① | 356 | 10 657 | 29.935 | 0.56 |
② | 90 | 488 | 5.422 | 0.25 |
③ | 92 | 1 554 | 16.891 | 0.54 |
图9 初始恢复比例与恢复耦合系数变化关系 (a)网络①;(b)网络②;(c)网络③
Fig.9 Relationship between initial restoration ratio and restoration coupling coefficient (a) Network ①; (b) Network ②; (c) Network ③
1 | LI H Q , ZOU Y L , ZHANG S Z , et al. Robustness of power grids structure and braess paradox phenomenon: A complex network theory study[J]. Chinese Journal of Computational Physics, 2021, 38 (4): 470- 478. |
2 | GAO C , FAN Y , JIANG S , et al. Dynamic robustness analysis of a two-layer rail transit network model[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, PP (99): 1- 16. |
3 | HOU F P , ZOU Y L , LIU T H M , et al. Research on cascading faults of hybrid point-to-point power information network based on blockchain[J]. Chinese Journal of Computational Physics, 2023, 40 (5): 633- 642. |
4 |
ZHANG L , WANG L , YUAN X , et al. Decoding the complex free radical cascade by using a DNA framework-based artificial DNA encoder[J]. Angewandte Chemie International Edition, 2021, 60 (19): 10745- 10755.
DOI |
5 | 蒋文君, 刘润然, 范天龙, 等. 多层网络级联失效的预防和恢复策略概述[J]. 物理学报, 2020, 69 (8): 81- 91. |
6 |
MOTTER A E , LAI Y C . Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66 (6): 065102.
DOI |
7 |
BULDYREV S V , PARSHANI R , PAUL G , et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464 (7291): 1025- 1028.
DOI |
8 |
DONG Y , ZHAO G , MA Y , et al. A novel image encryption scheme based on pseudo-random coupled map lattices with hybrid elementary cellular automata[J]. Information Sciences, 2022, 593, 121- 154.
DOI |
9 | 黄爱玲, 徐笑涵, 关伟, 等. 基于加权耦合映像格子的地铁网络稳定性演化研究[J]. 交通运输系统工程与信息, 2021, 21 (3): 140- 149. |
10 |
ZHOU Y , WANG J , YANG H . Resilience of transportation systems: Concepts and comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (12): 4262- 4276.
DOI |
11 |
MOTTER A E . Cascade control and defense in complex networks[J]. Physical Review Letters, 2004, 93 (9): 98701- 98710.
DOI |
12 |
JING K , DU X , SHEN L , et al. Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122061.
DOI |
13 | REN F , ZHAO T , WANG H . Risk and resilience analysis of complex network systems considering cascading failure and recovery strategy based on coupled map lattices[J]. Mathematical Problems in Engineering, 2015, 2015 (pt.19): 761818. |
14 |
XU S , XIA Y , OUYANG M . Effect of resource allocation to the recovery of scale-free networks during cascading failures[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123157.
DOI |
15 | DANZIGER M M , BARABASI A L . Recovery coupling in multilayer networks[J]. Nature Communications, 2022, 13 (1): 1- 8. |
16 | YIN R R , YUAN H , WANG J , et al. Modeling and analyzing cascading dynamics of the urban road traffic network[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 566, 125600. |
17 | WAN C , YANG Z , ZHANG D , et al. Resilience in transportation systems: A systematic review and future directions[J]. Transport Reviews, 2018, 38 (4): 479- 498. |
18 | HUANG Y , WU J , REN W , et al. Sequential restorations of complex networks after cascading failures[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 51 (1): 400- 411. |
19 | MAJDANDZIC A , PODOBINK B , BULDYREV S V , et al. Spontaneous recovery in dynamical networks[J]. Nature Physics, 2014, 10 (1): 34- 38. |
20 | 李钊, 郭燕慧, 徐国爱, 等. 复杂网络中带有应急恢复机理的级联动力学分析[J]. 物理学报, 2014, 63 (15): 417- 428. |
21 | 贾春晓, 李明, 刘润然. 多层复杂网络上的渗流与级联失效动力学[J]. 电子科技大学学报, 2022, 51 (1): 148- 160. |
22 | 吴宗柠, 狄增如, 樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报, 2021, 50 (1): 106- 120. |
23 | 王秋玲, 朱璋元, 陈红, 等. 基于CML的级联失效下异质多层交通网络节点抵抗特性研究[J]. 中国公路学报, 2022, 35 (1): 263- 274. |
24 | 张长富. 基于混沌理论的多安全级别视频加密算法研究与应用[D]. 沈阳: 东北大学, 2016. |
25 | BRUNEAU M , CHANG S E , EGUCHI R T , et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19 (4): 733- 752. |
26 | BARABASI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512. |
27 | FU T , WU L , LI C G . Site-bond percolation modeling of real networks: Generating function method[J]. Chinese Journal of Computational Physics, 2022, 39 (2): 212- 222. |
[1] | 邵贝贝, 邹艳丽, 洪少燕, 梁婵娟. 基于复杂网络拓扑的电网Braess悖论现象研究[J]. 计算物理, 2023, 40(6): 770-778. |
[2] | 付韬, 邬龙, 李晨光. 基于生成函数方法的现实网络座键渗流建模[J]. 计算物理, 2022, 39(2): 212-222. |
[3] | 张少泽, 邹艳丽, 谭秫毅, 李浩乾, 刘欣妍. 基于复杂网络理论的互联电网Braess悖论现象分析[J]. 计算物理, 2022, 39(2): 233-243. |
[4] | 李浩乾, 邹艳丽, 张少泽, 刘欣妍, 谭秫毅. 基于复杂网络的电网结构健壮性及Braess悖论现象研究[J]. 计算物理, 2021, 38(4): 470-478. |
[5] | 王意, 邹艳丽, 黄李, 李可. 综合考虑局部和全局特性的电网关键节点识别[J]. 计算物理, 2018, 35(1): 119-126. |
[6] | 安海岗. 基于复杂网络的时间序列双变量联动波动[J]. 计算物理, 2014, 31(6): 742-750. |
[7] | 范文礼, 刘志刚. 一种基于效率矩阵的网络节点重要度评价算法[J]. 计算物理, 2013, 30(5): 714-719. |
[8] | 唐圣学, 陈丽, 黄姣英. 关联复杂网络建模及辨识研究[J]. 计算物理, 2012, 29(2): 308-316. |
[9] | 王金兰, 陈光旨. 时空混沌系统的主动-间隙耦合同步[J]. 计算物理, 1999, 16(5): 511-516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《计算物理》编辑部
地址:北京市海淀区丰豪东路2号 邮编:100094 E-mail:jswl@iapcm.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发