Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (4): 431-440.DOI: 10.19596/j.cnki.1001-246x.8310
• Research Reports • Previous Articles Next Articles
Shouguang CHENG(), Yunqian YIN, Julian ZHONG, Kunyuan XU(
)
Received:
2020-11-23
Online:
2021-07-25
Published:
2021-12-21
Contact:
Kunyuan XU
CLC Number:
Shouguang CHENG, Yunqian YIN, Julian ZHONG, Kunyuan XU. Goos-Hanchen Shift of Electrons Based on Wigner Equation[J]. Chinese Journal of Computational Physics, 2021, 38(4): 431-440.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8310
Lx/nm | Ly/nm | Lc/nm | Δk/nm-1 | Δl/fs | Δx/nm | Δy/nm | kx0/nm-1 | σ/nm | 势垒宽度a/nm | 势垒高度/eV |
150 | 150 | 100 | π/Lc | 1.0 | 1.0 | 1.5 | 0.25 | 10 | 10 | 0.05 |
Table 1 Simulation parameters
Lx/nm | Ly/nm | Lc/nm | Δk/nm-1 | Δl/fs | Δx/nm | Δy/nm | kx0/nm-1 | σ/nm | 势垒宽度a/nm | 势垒高度/eV |
150 | 150 | 100 | π/Lc | 1.0 | 1.0 | 1.5 | 0.25 | 10 | 10 | 0.05 |
Fig.2 Comparison of optimizing redistribution scheme (a), (b), (c) are density distributions by the original program; (d), (e), (f) represent density distributions after optimization
线程数 | 计算时间/s | 加速比 |
1 | 94 443 | 1 |
2 | 54 627 | 1.73 |
3 | 36 064 | 2.62 |
4 | 30 710 | 3.08 |
5 | 28 684 | 3.29 |
6 | 23 071 | 4.09 |
7 | 21 187 | 4.45 |
8 | 19 285 | 4.9 |
Table 2 Thread-acceleration ratios of thesquare barrier evolution
线程数 | 计算时间/s | 加速比 |
1 | 94 443 | 1 |
2 | 54 627 | 1.73 |
3 | 36 064 | 2.62 |
4 | 30 710 | 3.08 |
5 | 28 684 | 3.29 |
6 | 23 071 | 4.09 |
7 | 21 187 | 4.45 |
8 | 19 285 | 4.9 |
Fig.9 Movement of wave packets with different incident energy at the barrier interface (a) Initial position of the wave packet; (b) Position of a incident kinetic energy E=0.01 eV wave packet at t=270 fs; (c) Position of a incident kinetic energy E=0.028 eV wave packet at t=180 fs; (d) Position of a incident kinetic energy E=0.0 7 eV wave packet at t=140 fs
1 |
GOOS F, HÄNCHEN H. Ein neuer und fundamentaler versuch zur total reflexion[J]. Annalen der Physik, 1947, 436 (7-8): 333- 346.
DOI |
2 |
GOOS F, HÄNCHEN H. Neumessung des Strahlversetzung seffektes bei total reflexion[J]. Annalen der Physik, 1949, 440 (3-5): 251- 252.
DOI |
3 |
ARTMANN K. Berechnung der Seitenversetzung des total reflektierten Strahles[J]. Annalen der Physik, 1948, 437 (1-2): 87- 102.
DOI |
4 |
RENARD R H. Total reflection: A new evaluation of the Goos-Hänchen shift[J]. Journal of the Optical Society of America, 1964, 54 (10): 1190- 1197.
DOI |
5 |
YU Z M, LIU Y, YANG S A. Anomalous spatial shifts in interface electronic scattering[J]. Frontiers of Physics, 2019, 14 (3): 33402.
DOI |
6 |
BLIOKH K Y, AIELLO A. Goos-Hänchen and Imbert-Fedorov beam shifts: An overview[J]. Journal of Optics, 2013, 15 (1): 014001.
DOI |
7 |
SINITSYN N A, NIU Q, SINOVA J, et al. Disorder effects in the anomalous Hall effect induced by Berry curvature[J]. Physical Review B, 2005, 72 (4): 045346.
DOI |
8 |
BALLICCHIA M, WEINBUB J, NEDJALKOV . Electron evolution around a repulsive dopant in a quantum wire: Coherence effects[J]. Nanoscale, 2018, 10 (48): 23037- 23049.
DOI |
9 |
SELLIER J M, KAPANOVA K G. A study of entangled systems in the many-body signed particle formulation of quantum mechanics[J]. International Journal of Quantum Chemistry, 2017, 117 (23): e25447.
DOI |
10 |
WIGNER E P. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40, 749.
DOI |
11 |
SELLIER J M. A signed particle formulation of non-relativistic quantum mechanics[J]. Journal of Computational Physics, 2015, 297, 254- 265.
DOI |
12 | SELLIER J M, NEDJALKOV M, DIMOV I, et al. A benchmark study of the Wigner Monte Carlo method[J]. Monte Carlo Methods and Applications, 2014, 20 (1): 43- 51. |
13 |
WEINBUB J, FERRY D K. Recent advances in Wigner function approaches[J]. Applied Physics Reviews, 2018, 5 (4): 041104.
DOI |
14 |
KIM K Y, LEE B. On the high order numerical calculation schemes for the Wigner transport equation[J]. Solid-State Electronics, 1999, 43 (12): 2243- 2245.
DOI |
15 |
KIM K Y, KIM S, TANG T. Accuracy balancing for the finite-difference-based solution of the discrete Wigner transport equation[J]. Journal of Computational Electronics, 2017, 16 (1): 148- 154.
DOI |
16 |
SHAO S, LU T, CAI W. Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport[J]. Communications in Computational Physics, 2011, 9 (3): 711- 739.
DOI |
17 |
SCHULZ L, SCHULZ D. Application of a slowly varying envelope function onto the analysis of the Wigner transport equation[J]. IEEE Transactions on Nanotechnology, 2016, 15 (5): 801- 809.
DOI |
18 |
LEE J H, SHIN M. Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses[J]. IEEE Transactions on Nanotechnology, 2017, 16 (6): 1028- 1036.
DOI |
19 |
DORDA A, SCHURRER F. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes[J]. Journal of Computational Physics, 2015, 284, 95- 116.
DOI |
20 | SHIFREN L, FERRY D. A Wigner function based ensemble Monte Carlo approach for accurate incorporation of quantum effects in device simulation[J]. Journal of Computational Electronics, 2002, 1 (1-2): 55- 58. |
21 | ELLINGHAUS P, NEDJALKOV M, SELBERHERR S. The influence of electrostatic lenses on wave packet dynamics[C]. International Conference on Large-Scale Scientific Computing, Springer, Cham, 2015: 277-284. |
22 | LI Gang, ZHANG Baoyin, DENG Li, SHANGGUAN Danhua, et al. Pseudo-random numbers for identical results on varying numbers of processors in domain decomposed particle Monte Carlo simulations[J]. Chinese J Comput Phys, 2017, 34 (1): 67- 72. |
23 | XU Haiyan, HUANG Zhengfeng, CAI Shaohui. Global variance reduction method for Monte Carlo particle transport problemes[J]. Chinese J Comput Phys, 2010, 27 (5): 722- 732. |
24 | HU Xiaoyan, CAO Xiaolin, GUO Hong, et al. Parallel algorithm of coupled Fourier transform and fluid numerical computation[J]. Chinese J Comput Phys, 2012, 29 (4): 484- 488. |
25 | ELLINGHAUS P. Two-dimensional Wigner Monte Carlo simulation for time-resolved quantum transport with scattering[D]. Vienna: Universität Wien, 2016. |
26 | CHEN X, LI C F, BAN Y. Novel shift in transmission through a two-dimensional semiconductor barrier[J]. Physics Letters A, 2006, 354 (1/2): 161- 165. |
27 |
BOCQUILLON E, PARMENTIER F D, GRENIER C, et al. Electron quantum optics: Partitioning electrons one by one[J]. Physical Review Letters, 2012, 108 (19): 196803.
DOI |
28 |
ELLINGHAUS P, WEINBUB J, NEDJALKOV M, et al. Analysis of lense-governed Wigner signed particle quantum dynamics[J]. Physica Status Solidi-Rapid Research Letters, 2017, 11 (7): 1700102.
DOI |
[1] | XU Xiaodong, ZHOU Bin, GUO Jinchuan, YI Minghao, XIAO Feihu. Monte Carlo Simulation of Interaction of Electrons with Anode in Microstructure X-Ray Tubes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(1): 95-102. |
[2] | LI Chaolong, SHI Haiquan, LÜ Jianqin. Simulation of Intense Beam Transfer in Double-Cylinder Accelerate Lens [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(3): 403-408. |
[3] | Wang Liping, Tang Tiantong. An automatic differentiation technique: differential algebra and its application in charged particle optics [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 16(3): 225-234. |
[4] | Zhou Qing, Chen Ergang, Hu Zonggao. COMPUTATION AND ANALYSIS OF A MAGNETIC SEXTUPOLE SYSTEM FOR CORRECTION OF SPHERICAL ABERRATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(S1): 485-486. |
[5] | Song Zhitang, Liu Chunliang, Xia Huiqin. ANALYTICAL EXPRESSIONS OF AXIAL THIRD ORDER CHROMATIC DISPERSION ABERRATION COEFFICIENTS OF CIRCULAR ELECTRIC FIELD [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(3): 368-374. |
[6] | Lei Wei, Tong Linsu. SIMULATION OF ELECTRON OPTICAL SYSTEM IN COLOR MONITOR TUBES [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 13(3): 323-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.