Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (6): 677-688.DOI: 10.19596/j.cnki.1001-246x.8672
Previous Articles Next Articles
Sijie OUYANG(), Shuanghui HU(
), Xuefeng OUYANG, Wanpo ZHU, Yuandan LAN, Xuange HUANG
Received:
2022-11-28
Online:
2023-11-25
Published:
2024-01-22
Contact:
Shuanghui HU
CLC Number:
Sijie OUYANG, Shuanghui HU, Xuefeng OUYANG, Wanpo ZHU, Yuandan LAN, Xuange HUANG. Discrete Alfvén Eigenmodes in ITER with the Internal Transport Barrier Scenario[J]. Chinese Journal of Computational Physics, 2023, 40(6): 677-688.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8672
Fig.1 (a) The parameters (s, α) and (b) pressure profile versus ρ; (c) squares (□) and crosses (+) are used to describe ωr/ωA0 and log(-γ/ωA0) versus ρ, respectively; (d) structure of potential wells
Fig.2 (a) Potential V and (b) δψ(1, 0), (c) δψ(1, 1) and (d) δψ(2, 0) versus θ for α=5.98, s=0.61 in MHD (Real and imaginary δψ is plotted by solid and dashed line, respectively.)
Fig.7 (a) The parameters (s, α) versus ρ at t=2 000 s; (b) Squares (□) and crosses (+) are used to describe the real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) versus ρ at t=2 000 s, respectively
Fig.8 (a) Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) versus α for s=-0.56; (b) ωr/ωA0 and log(-γ/ωA0) versus s for α=4.8 (ωr/ωA0and log(-γ/ωA0) are plotted by solid lines (—) and dashed lines (-), respectively.)
Fig.9 The parameters of (a) α and (b) s versus ρ; (c) real frequencies ωr/ωA0 and (d) the parameter relating to imaginary frequencies log(-γ/ωA0) versus ρ after the ECCD removed at t=2 000 s
Fig.10 After the addition of 12 MW of NBI heating by removing 12 MW of ICH and the LH system, (a) the parameters (s, α) versus ρ at t=2 300 s and (b) the range of αTAEs at t=2 300 s (Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) are plotted by square (□) and crosses (+), respectively.)
Fig.12 (a) Real frequencies ωr/ωA0 (—) and growth rate γ/ωA0 (- - -) versus vE/vA0 at ρ=0.45 at t=2 000 s; (b) potential well, (c) αTAEs (3, 0) and (d) (4, 0) verse θ in hybrid model
Fig.13 (a), (b) and (c) the parameters (s, α) versus ρ, corresponding to Case 1, Case 2 and Case 3; (d), (e) and (f) the frequency profiles of αTAE (1, 0), corresponding to Case 1, Case 2 and Case 3, respectively (Real frequencies ωr/ωA0 and the parameter relating to imaginary frequencies log(-γ/ωA0) are plotted by square (□) and crosses (+), respectively.)
Fig.14 In case 3, (a) real frequencies ωr/ωA0 (—) and growth rates γ/ωA0 (- - -) versus vE/vA0 at ρ=0.66; (b) potential well; (c) αTAE (3, 0) and (d) (3, 1) verse θ in hybrid model
1 |
CHEN L . Theory of magnetohydrodynamic instabilities excited by energetic particles in Tokamaks[J]. Physics of Plasmas, 1994, 1 (5): 1519- 1522.
DOI |
2 |
CHENG C , CHEN L , CHANCE M . High-n ideal and resistive shear Alfvén waves in Tokamaks[J]. Annals of Physics, 1985, 161 (1): 21- 47.
DOI |
3 | YANG W , LI G , HU Y , et al. Linear stability of toroidal Alfvén eigenmodes in the Chinese fusion engineering test reactor[J]. Fusion Engineering and Design, 2017, 114 (1): 118- 126. |
4 |
ZHU X , WANG F , WANG Z . Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas[J]. Chinese Physics B, 2020, 29 (2): 025201.
DOI |
5 |
FU G , CHENG C . Theory of a high-n toroidicity-induced shear Alfvén eigenmode in tokamaks[J]. Physics of Fluids B: Plasma Physics, 1990, 2 (5): 985- 993.
DOI |
6 |
WEI S , WANG Y , SHI P , et al. Nonlinear coupling of reversed shear Alfvén eigenmode and toroidal Alfvén eigenmode during current ramp[J]. Chinese Physics Letters, 2021, 38 (3): 035201.
DOI |
7 |
CHEN W , YU L , LIU Y , et al. Destabilization of reversed shear Alfvén eigenmodes driven by energetic ions during NBI in HL-2A plasmas with qmin~1[J]. Nuclear Fusion, 2014, 54 (10): 104002.
DOI |
8 |
ZHANG T , LIU H , LI G , et al. Experimental observation of reverse-sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20 (11): 115101.
DOI |
9 |
WANG W , ZHOU D , HU Y , et al. Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap[J]. Chinese Physics B, 2018, 27 (12): 125202.
DOI |
10 |
HU S , CHEN L . Discrete Alfvén eigenmodes in high-β toroidal plasmas[J]. Physics of Plasmas, 2004, 11 (1): 1- 4.
DOI |
11 |
HU S , CHEN L . Discrete Alfvén eigenmodes excited by energetic particles in high-β toroidal plasmas[J]. Plasma Physics and Controlled Fusion, 2005, 47 (8): 1251- 1269.
DOI |
12 | 王帅, 龙超云, 胡双辉, 等. JET运行条件下高能量粒子激发的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2013, 33 (4): 301- 311. |
13 |
孔冉, 胡双辉, 王帅, 等. JT-60U及JT-60SA运行条件下高能量粒子激发的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2013, 33 (2): 113- 120.
DOI |
14 |
王一如, 胡双辉, 姚龙宝, 等. DIII-D高性能运行参数下的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2012, 32 (2): 140- 147.
DOI |
15 |
WANG J , HU C , HU S , et al. Plasma science and technology, Alfvén instabilities excited by energetic particles in a parameter regime similar to EAST operation[J]. Plasma Science and Technology, 2013, 15 (8): 750- 754.
DOI |
16 |
WANG J , HU S , DAI Q , et al. Discrete Alfvén eigenmodes in international thermonuclear experimental reactor operations with negative magnetic shear[J]. Chinese Physics B, 2010, 19 (9): 095202.
DOI |
17 |
ZOU Y , CHAN V , HUANG J , et al. Validation of Alfvén eigenmode simulations on DIII-D and projection for CFETR scenario[J]. Nuclear Fusion, 2019, 59 (6): 066005.
DOI |
18 |
SHIMOMURA Y , MURAKAMI Y , POLEVOI A , et al. ITER: Opportunity of burning plasma studies[J]. Plasma Physics and Controlled Fusion, 2001, 43 (12A): A385- A394.
DOI |
19 |
SIPS A , GIRUZZI G , IDE S , et al. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor[J]. Physics of Plasmas, 2015, 22 (2): 021804.
DOI |
20 |
MURAKAMI M , PARK J , GIRUZZI G , et al. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER[J]. Nuclear Fusion, 2011, 51 (10): 103006.
DOI |
21 |
WOLF R . Internal transport barriers in tokamak plasmas[J]. Plasma Physics and Controlled Fusion, 2003, 45 (1): R1- R91.
DOI |
22 |
IDA K , FUJITA T . Internal transport barrier in tokamak and helical plasmas[J]. Plasma Physics and Controlled Fusion, 2018, 60 (3): 033001.
DOI |
23 |
VOITSEKHOVITCH I , GARBET X , BENKADD S , et al. Stabilization of ion temperature gradient driven turbulence and formation of an internal transport barrier in a tokamak[J]. Physics of Plasmas, 2002, 9 (11): 4671- 4684.
DOI |
24 |
JIAN G , HUANG L . The instability analysis of ion temperature gradient driven in a tokamak plasma with negative magnetic shear[J]. Chinese Journal of Computational Physics, 2001, 18 (6): 527- 530.
DOI |
25 | LONG Y , MU Z , DONG J , et al. Numerical simulation and parallel efficiency of internal transport with barrier trigger in Tokamak plasmas[J]. Chinese Journal of Computational Physics, 2007, 24 (2): 141- 145. |
26 |
LONG Y , MU Z , WANG A , et al. Numerical method for a kind of singular complex eigenequations[J]. Chinese Journal of Computational Physics, 2006, 23 (4): 436- 440.
DOI |
27 |
MCCLENAGHAN J , GAROFALO A , LAO L , et al. Transport at high βp and development of candidate steady state scenarios for ITER[J]. Nuclear Fusion, 2020, 60 (4): 046025.
DOI |
28 |
GARCIA J , GIRUZZI G , ARTAUD J , et al. Integrated modeling of ITER steady-state scenarios[J]. Plasma Physics and Controlled Fusion, 2008, 50 (12): 124032.
DOI |
29 |
DING S , GAROFALO A , QIAN J , et al. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST[J]. Physics of Plasmas, 2017, 24 (5): 056114.
DOI |
30 |
STAEBLER G , GAROFALO A , PAN C , et al. Transport barriers in bootstrap-driven tokamaks[J]. Physics of Plasmas, 2018, 25 (5): 056113.
DOI |
31 |
CONNOR J , HASTIE R , TAYLOR J . High mode number stability of an axisymmetric toroidal plasma transport barriers in bootstrap-driven tokamaks[J]. Proc R Soc Lond A, 1979, 365 (1720): 1- 17.
DOI |
32 |
CONNOR J , HASTIE R , TAYLOR J . Shear, periodicity, and plasma ballooning modes[J]. Physical Review Letters, 1978, 40 (6): 396- 399.
DOI |
33 |
CHEN L , HASEGAWA A . Kinetic theory of geomagnetic pulsations[J]. Journal of Geophysical Research, 1991, 96 (A2): 1503- 1512.
DOI |
34 |
PARKER S , LEE W . A fully nonlinear characteristic method for gyrokinetic simulation[J]. Physics of Fluids B: Plasma Physics, 1993, 5 (1): 77- 86.
DOI |
35 | CHEN L , ZONCA F . Theory of shear Alfvén waves in toroidal plasma[J]. Physica Scripta, 1995, 1995 (T60): 81- 90. |
36 |
ZHENG L , CHEN L , SANTORO R . Numerical simulations of toroidal Alfvén instabilities excited by trapped energetic ions[J]. Physics of Plasmas, 2000, 7 (6): 2469- 2476.
DOI |
[1] | Wanpo ZHU, Shuanghui HU, Xuefeng OUYANG, Sijie OUYANG, Yuandan LAN. Discrete Alfvén Eigenmodes in High Performance Scenarios with ITBs on EAST [J]. Chinese Journal of Computational Physics, 2023, 40(4): 461-472. |
[2] | Jingkun XU, Weihua WANG. Hybrid Simulation of Non-resonant Fishbone Instabilities Excited by Passing Energetic Particles in EAST Tokamak [J]. Chinese Journal of Computational Physics, 2023, 40(3): 291-300. |
[3] | Renzhu ZHU, Jiafeng HE, Taihao HUANG, Xinglei RUAN, Yuchen XU, Jin GUO, Tianyuan LIU, Shifeng MAO, Minyou YE. Performance of Numerical Calculation of Transport Equations of Scrape-off Layer Plasma: Pressure Correction Algorithms [J]. Chinese Journal of Computational Physics, 2023, 40(1): 29-39. |
[4] | Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks [J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430. |
[5] | LIU Zuguang, LI Xinxia, YANG Ming. Effect of Lower Hybrid Wave Current Drive with High Component N‖ on EAST [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 467-472. |
[6] | ZHA Xuejun, ZHONG Dejun, WANG Fuqiong, CHEN Yiping, LU Hongwei, HU Liqun. Monte-Carlo Modelling of Impurity Transport in EAST Tokamak [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 715-721. |
[7] | LIU Yan, GONG Xueyu, YANG Lei, PENG Xiaowei, YIN Lan. Numerical Solution of Full Wave Equation for Fast Wave Current Drive in Tokamak [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(3): 375-382. |
[8] | HUANG Qin-chao, WANG Hua-zhong, LUO Jia-rong, YUAN Qi-ping. A Simulation of the EAST MHD Equilibrium Configuration [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 23(2): 231-236. |
[9] | Zhang Xianmei, Li Youyi, Wan Baonian. Calculation of neutral atom density distributions in tokamaks with monte carlo method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 16(6): 606-609. |
[10] | Wang Shaojie, Qiu Lijian. ANALYSIS OF THE α PARTICLE TRANSPORT IN TOKAMAKS BY THE TWO-DIMENSIONAL TIME-DEPENDENT FOKKER-PLANCK EQUATION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 13(2): 129-135. |
[11] | Liu Cheng an, Liu Chaofen, Huang Zhengfeng, Liu Zhongxing. STUDY OF MULTI-DIMENSIONAL NEUTRONICS CALCULATION OF THE FUSION-FISSION HYBRID EXPERIMENTAL REACTOR [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(3): 274-278. |
[12] | Xu Wenbin, Li Fangzhu. USING THE CODE OF DIRECT QUESTION TO SOLVE INVERSE QUESTION [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 6(4): 441-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.