Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (6): 717-731.DOI: 10.19596/j.cnki.1001-246x.8992
• Research Article • Previous Articles Next Articles
Received:
2024-07-22
Online:
2024-11-25
Published:
2024-12-26
Contact:
Bo ZHANG
Kai LI, Bo ZHANG. Inversion Algorithms Based on Deep Learning for Inverse Problems: Some Recent Progresses[J]. Chinese Journal of Computational Physics, 2024, 41(6): 717-731.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8992
Fig.4 Reconstructed results by learned projected iterative algorithm (3rd column) (a)Landweber; (b) simplified learned projected scheme; (c) learned projected scheme; (d) ground truth
1 |
|
2 |
|
3 |
|
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
|
8 |
|
9 |
|
10 |
|
11 |
DOI |
12 |
|
13 |
|
14 |
DOI |
15 |
DOI |
16 |
|
17 |
DOI |
18 |
|
19 |
DOI |
20 |
DOI |
21 |
DOI |
22 |
DOI |
23 |
DOI |
24 |
DOI |
25 |
DOI |
26 |
DOI |
27 |
DOI |
28 |
DOI |
29 |
DOI |
30 |
|
31 |
DOI |
32 |
DOI |
33 |
DOI |
34 |
DOI |
35 |
DOI |
36 |
DOI |
37 |
DOI |
38 |
LUNZ S, ÖKTEM O, SCHÖNLIEB C B. Adversarial regularizers in inverse problems[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018: 8516-8525.
|
39 |
YANG Yan, SUN Jian, LI Huibin, et al. Deep ADMM-Net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016: 10-18.
|
40 |
DOI |
41 |
DOI |
42 |
DOI |
43 |
DOI |
44 |
DOI |
45 |
DOI |
46 |
DOI |
47 |
DOI |
48 |
DOI |
49 |
|
50 |
DOI |
51 |
DOI |
52 |
DOI |
53 |
JIN Peng, ZHANG Xitong, CHEN Yinpeng, et al. Unsupervised learning of full-waveform inversion: Connecting CNN and partial differential equation in a loop[DB/OL]. arXiv, 2022: 07584(2022-03-18). https://arxiv.org/abs/2110.07584.
|
54 |
DOI |
55 |
DOI |
56 |
LUNZ S. Learned regularizers for inverse problems[M]//CHEN Ke, SCHINLIEB C B, TAI Xuecheng, et al. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, Cham: Springer, 2022: 1-21.
|
57 |
HALTMEIER M, NGUYEN L. Regularization of inverse problems by neural networks[M]. CHEN Ke, SCHINLIEB C B, TAI Xuecheng, et al. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, Cham: Springer, 2022: 1-29.
|
58 |
DOI |
59 |
DOI |
60 |
DOI |
61 |
XU R, ZHANG B. NPDHG-CSNets: A deep learning approach for compressive sensing MRI: 报告编号缺失[R]: Preprint, 2024.
|
62 |
许锐航. 基于可学习正则化框架的磁共振图像重构算法研究[D]. 北京: 中国科学院大学, 2023.
|
63 |
DOI |
64 |
DOI |
65 |
|
66 |
|
67 |
|
68 |
DOI |
69 |
DOI |
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
|
78 |
|
79 |
|
80 |
|
81 |
|
82 |
NEYSHABUR B, LI Z, BHOJANAPALLI S, et al. Towards understanding the role of over-parametrization in generalization of neural networks[DB/OL]. arXiv, 2018(2018-05-30). https://arxiv.org/pdf/1805.12076.
|
83 |
|
84 |
CHEN D, TACHELLA J, DAVIES M E. Robust equivariant imaging: A fully unsupervised framework for learning to image from noisy and partial measurements[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, 2022: 5637-5646.
|
85 |
|
86 |
FARAHANI A, VOGHOEI S, RASHEED K, et al. A brief review of domain adaptation[C]//Advances in Data Science and Information Engineering: Proceedings From ICDATA 2020 and IKE. Las Vegas, USA: ICDATA, 2021: 877-894.
|
[1] | Dong LIU, Qilong CHEN, Xueqiang WANG. Deep Learning Method for Solving Linear Integral Equations Through Primitive Function Transformation [J]. Chinese Journal of Computational Physics, 2024, 41(5): 651-662. |
[2] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[3] | Guangdong LIU, Kaiyin ZHANG. A Modified Contrast Source Inversion Method for Electrically Dispersive Media [J]. Chinese Journal of Computational Physics, 2022, 39(6): 699-706. |
[4] | Yingdong LU, Duqu WEI. Power System Chaos Prediction Based on DLSTM with Genetic Attention Mechanism [J]. Chinese Journal of Computational Physics, 2022, 39(3): 371-378. |
[5] | ZHANG Qingfu, YAO Jun, HUANG Zhaoqin, LI Yang, WANG Yueying. A Multiscale Deep Learning Model for Fractured Porous Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 665-672. |
[6] | ZHOU Huanlin, YAN Jun, YU Bo, CHEN Haolong. Identification of Thermal Conductivity for Transient Heat Conduction Problems by Improved Cuckoo Search Algorithm [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 212-220. |
[7] | LIU Guangdong, YU Guangqun, FAN Shimin. Three-Dimensional Time-Domain Electromagnetic Inverse Scattering Technique for Debye Dispersive Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(4): 455-468. |
[8] | WANG Qishen, LIU Minghui, ZHANG Lihua, HE Min. Reconstruction Flexural Stiffness of Symmetric Simple Supported Beams with Single Mode [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(2): 216-222. |
[9] | JIANG Liang, XU Chenglong. Calibration Parameters in Non.Guassian 0ne.factor Short-term Rate Model with Regularization Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(6): 837-844. |
[10] | YANG Xin, LI Rundong, LIU Hangang, WANG Guanbo, WANG Kan. An Unfolding Method of NDP Based on Probability Iteration [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(6): 891-900. |
[11] | PAN Wenfeng, ZONG Zhixiong, YOU Yunxiang, MIAO Guoping. Fast Acoustic Far-field Inverse of Three-dimensional Scattering Objects in an Ocean Waveguide [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(1): 121-130. |
[12] | XUE Qi-wen, YANG Hai-tian, HU Guo-jun. A Conjugate Gradient Method for Inverse Heat Conduction Problems with Multi-variables in Transient-state [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 22(1): 56-60. |
[13] | ZHUANG Hong-wei, MA Yi-chen, ZHANG Zhi-bin, WANG Jian. Reconstruction of the Shape of Unknown Obstacles in Freshwater [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(1): 54-60. |
[14] | YANG Feng, NIE Zai-ping. AN EFFICIENT INVERSION OF THE FORMATION CONDUCTIVITY DISTRIBUTION BASED ON THE INDUCTION MEASUREMENTS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(S1): 89-94. |
[15] | XIAO TING-yan, SONG Jin-lai. A DISCRETE REGULARIZATION METHOD FOR THE NUMERICAL INVERSION OF ABEL TRANSFORM [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(6): 602-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.