CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2016, Vol. 33 ›› Issue (5): 523-538.
Previous Articles Next Articles
Received:
2015-07-12
Revised:
2015-11-16
Online:
2016-09-25
Published:
2016-09-25
CLC Number:
JIA Zupeng, SUN Yutao. A 2D Cell-centered MMALE Method Based on MOF Interface Reconstruction[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(5): 523-538.
[1] HIRT C W, AMSDEN A A, COOK H K. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. J Comput Phys,1974, 14:227-253. [2] PEERY J S, CARROLL D E. Multi-material ALE methods in unstructured grids [J].Comput Methods Appl Mech Eng, 2000, 187: 591-619. [3] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J Comput Phys, 1981, 39: 201-225. [4] LIANG X H. Second order volume of fluid interface reconstruction method in three dimensions[J]. Chinese Journal of Computational Mechanics, 2013, 30(3): 353-360. [5] 贾祖朋. 基于MOF界面重构的多物质ALE方法 [J]. 计算物理, 2010, 27(3): 353-360. [6] JIA Z P, LIU J, ZHANG S D. An effective integration of methods for second-order three-dimensional multi-material ALE method on unstructured hexahedral meshes using MOF interface reconstruction [J]. J Comput Phys, 2013, 236: 513-562. [7] 冯其金,刘军,王言金,等. 二维轴对称坐标下基于介质形心和体积的界面重构方法[J]. 中国科学:物理学 力学 天文学,2014,44(2):203-211. [8] 曾清红,孙文俊. 多介质大变形流动的MOF-MMALE数值模拟研究 [J]. 应用数学和力学,2014,35(10):1163-1176. [9] GODUNOV S K. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics [J]. Matematicheskii Sbornik, 1959,47(3): 271-306. [10] MAIRE P -H, ABGRALL R, BREIL J, et al. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems [J]. SIAM Journal on Scientific Computing, 2007,29: 1781-1824. [11] MAIRE P -H, BREIL J. A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems [J]. Int J Numer Meth Fluids, 2007, 56: 1417-1423. [12] MAIRE P -H. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes [J]. J Comput Phys, 2009, 228: 2391-2425. [13] DYADECHKO V, SHASHKOV M. Moment-of-fluid interface reconstruction[R/OL]. Technical Report LA-UR-05-7571,Los Alamos National Laboratory,Los Alamos, NM,Oct 2005. http://math.lanl.gov/~vdyadechko/doc/2005-mof.pdf. [14] DYADECHKO V, SHASHKOV M. Reconstruction of multi-material interfaces from moment data [J]. J Comput Phys, 2008, 227: 5361-5384. [15] GALERA S, MAIRE P H, BREIL J. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction [J]. J Comput Phys, 2010, 229: 5755-5787. [16] GALERA S, BREIL J, MAIRE P H. A 2D unstructured multi-material cell-centered arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction [J]. Comput Fluids, 2010, 229: 5755-5787. [17] BENSON D J. A mixture theory for contact in multi-material Eulerian formulations [J]. Comput Methods Appl Mech Engrg, 1997,140: 59-86. [18] VITALI E, BENSON D J. An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations [J].Int J Numer Meth Engng, 2006,67:1420-1444. [19] SHASHKOV M. Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes [J]. Int J Numer Meth Fluids, 2007, 56:1497-1504. [20] KUCHARIK M, GARIMELLA R V, SCHOFIELD S P, et al. A comparative study of interface reconstruction methods for multi-material ALE simulations [J]. J Comput Phys, 2010, 229: 2432-2452. [21] WINSLOW A M. Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh [J]. J Comput Phys, 1996, 1(2): 149-172 (Reprinted in 1997,135(2): 128-138). [22] KNUPP P. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I-A framework for surface mesh optimization [J]. Int J Numer Methods Eng, 2000, 48(3): 401-420. [23] DUKOWICZ J, BAUMGARDNER J.Incremental remapping as a transport/advection algorithm [J].J Comput Phys,2000,160:318-335. [24] 贾祖朋,蔚喜军. 基于level set的Eulerian-Lagrangian耦合方法及其应用 [J].力学学报, 2010,42(2):177-182. [25] LIU Y K, YAN Y, SHI J Y. An efficient algorithm for line clipping against a polygon [J]. Chinese Journal of Computers, 1999,22(11):1209-1214. [26] SEDOV L I. Similarity and dimensional methods in mechanics [M]. New York:Academic Press, 1959. [27] BALL G J, HOWELL B P, LEIGHTON T G, et al. Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation [J]. Shock Waves, 2000,10: 265-276. [28] QUIRK J J, KAMI S. On the dynamics of a shock-bubble interaction [J]. J Fluid Mech, 1996, 318: 129-163. [29] HAAS J F, STUTEVANT B. Interaction of weak-shock waves [J]. J Fluid Mech, 1987, 181: 41-76. [30] LOUBèRE R, MAIRE P H, SJASHKOV M, et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method [J]. J Comput Phys, 2010, 229: 4724-4761. [31] WU J, XU S H, ZHAO N. A hybrid method for multiphase flows with large density ratio[J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 1-10. [32] GAO Y F, ZHANG X Y, LIU N. Particle finite element method for incompressible multi-fluid flows[J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 35-43. |
[1] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[2] | Yaoli FANG, Yi WANG. An IMEX Method for 2-D Radiation Hydrodynamics [J]. Chinese Journal of Computational Physics, 2021, 38(4): 401-417. |
[3] | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 379-392. |
[4] | ZHANG Lin, GE Yongbin. High-order Fully Implicit Scheme and Multigrid Method for Two-dimensional Semilinear Diffusion Reaction Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 307-319. |
[5] | DING Qi, SHANG Yueqiang. Parallel Finite Element Algorithms Based on Two-grid Discretization for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 10-18. |
[6] | ZHAO Guozhong, YU Xijun, GUO Hongping, DONG Ziming. A Local Discontinuous Petrov-Galerkin Method for Partial Differential Equations with High Order Derivatives [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 517-532. |
[7] | GUO Zitao, FENG Renzhong. A High Order Accuracy Corrected Hermite-ENO Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 141-152. |
[8] | ZHANG Shouhui, LIANG Dong. A Strang-type Alternating Segment Domain Decomposition Method for Two-dimensional Parabolic Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 413-428. |
[9] | LI Lingxiao. Parallel Finite Element Computation of Incompressible Viscous Flows Based on Block Preconditioning Strategy [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 151-160. |
[10] | GE Zhihao, WU Huili. A Penalized Finite Element Method of Nonlocal Diffusion Problem with Volume Constraints [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 161-168. |
[11] | YANG Xiaocheng, SHANG Yueqiang. Two-level Subgrid Stabilized Methods for Navier-Stokes Equations at High Reynolds Numbers [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 657-665. |
[12] | ZHAO Guozhong, YU Xijun, GUO Huaimin. A Discontinuous Petrov-Galerkin Method for Two-dimensional Compressible Gas Dynamic Equations in Lagrangian Coordinates [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 294-308. |
[13] | GE Yongbin, CAI Zhiquan. High-order Compact Difference Schemes and Adaptive Method for Singular Degenerate Diffusion-Reaction Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 309-319. |
[14] | CHENG Xiaohan, NIE Yufeng, CAI Li, FENG Jianhu. Entropy Stable Scheme Based on Moving Meshesfor Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 175-182. |
[15] | LV Guixia, SUN Shunkai. A Finite Directional Difference Meshless Method for Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 649-661. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.