[1] HOWELL L H, GREENOUGH J A. Radiation diffusion for multi-fluid Eulerian hydrodynamics with adaptive mesh refinement[J]. J Comput Phys, 2003, 184: 53-78. [2] XU X, MO Z, LIU Q, et al. Implicit time-integration algorithm for diffusion equations with structured AMR and its applications[J]. Chinese J Comput Phys, 2012, 29(5): 684-692. [3] LIU Q, XU X, WU J. An adaptive explicit time integration algorithm for hydrodynamic equations and application in ICF[J]. Chinese J Comput Phys, 2011, 28(2): 174-180. [4] GONG X F, YANG J M, ZHANG S D. A parallel SPH method with background grid of adaptive mesh refinement[J].Chinese J Comput Phys, 2016,33(2):183-189. [5] SUN W J, FAN Z F. Adaptive mesh refinement kinetic scheme for equations of radiation hydrodynamics[J].Chinese J Comput Phys, 2015,32(3):277-292. [6] SHU S, YUE X Q, ZHOU Z Y, et al. Approximation and two-level algorithm of finite volume scheme for diffusion equations with AMR[J].Chinese J Comput Phys, 2014,31(4):390-402. [7] NONAKA A, ASPDEN A, ZINGALE M, et al. High-resolution simulations of convection preceding ignition in type Ia supernovae using adaptive mesh refinement[J]. The Astrophysical Journal, 2012, 745: 73-94. [8] ALMGREN A, BELL J, LIJEWSKI M, et al. Nyx: A massively parallel AMR code for computational cosmology[J]. Astrophysical Journal, 2013, 765(1):930-940. [9] MO Z, ZHANG A, CAO X, et al. JASMIN: A parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science, 2010, 4(4):480-488. [10] https://ccse.lbl.gov/BoxLib. [11] GOODALE T, ALLEN G, LANFERMANN G, et al. The cactus framework and toolkit: Design and applications[M]// High performance computing for computational science - VECPAR 2002. Springer Berlin Heidelberg, 2002:26-28. [12] COLELLA P, GRAVES D T, LIGOCKI T J, et al. Chombo software package for AMR applications design document[CP]. 2009. [13] BRYAN G L, NORMAN M L, O'SHEA B W, et al. Enzo: An adaptive mesh refinement code for astrophysics[J]. Astrophysical Journal Supplement, 2013, 211(2). [14] DUBEY A, REID L B, WEIDE K, et al. Extensible component based architecture for FLASH: A massively parallel, multiphysics simulation code[CP]. 2009:512-522. [15] HORNNUG R D, KOHN S R. Managing application complexity in the SAMRAI object-oriented framework[J]. Concurrency and Computation: Practice and Experience, 2002, 14(5):347-368. [16] PARKER S G. A component-based architecture for parallel multi-physics PDE simulation[J]. Future Generation Computer Systems, 2006, 22(1-2):204-216. [17] WISSKNK A M, HYSOM D, HORNUNG R D. Enhancing scalability of parallel structured AMR calculations[C]//International Conference on Supercomputing, ACM, 2003:336-347. [18] DE BERG M, KREVELD M V, OVERMARS M H, et al. Computational geometry: Algorithms and applications[M]//Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008:333-334. [19] XU L, ZHANG A, LI X, et al. A fast communication algorithm for parallel structured mesh applications[J]. Chinese Journal of Computational Physics, 2012, 29(1):58-64. [20] ZOMORODIAN A, EDELSBRUNNER H. Fast software for box intersections[C]//Sixteenth Symposium on Computational Geometry, ACM, 2000. [21] DUBEY A, ALMGREN A, BELL J, et al. A survey of high level frameworks in block-structured adaptive mesh refinement packages[J]. Journal of Parallel & Distributed Computing, 2014, 74(12):3217-3227. |