CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2019, Vol. 36 ›› Issue (3): 280-290.DOI: 10.19596/j.cnki.1001-246x.7831
Previous Articles Next Articles
KONG Linghai, KONG Lingbo, XU Haibo, JIA Qinggang
Received:
2018-01-11
Revised:
2018-07-10
Online:
2019-05-25
Published:
2019-05-25
Supported by:
CLC Number:
KONG Linghai, KONG Lingbo, XU Haibo, JIA Qinggang. A Higher Order Regularization Approach for Object Reconstruction with Mixed Laplace-Gaussian Likelihood[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 280-290.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.7831
[1] FOI A, TRIMECHE M, EQIAZARIAN K. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data[J]. IEEE Trans Image Processing, 2008, 17:1737-1754. [2] CHOUZENOUX E, JEZIERSKA A, PESQUET J C, et al. A convex approach for image restoration with exact Poisson-Gaussian likelihood[J]. SAIM J Imaging Sci, 2015, 8(4):2662-2682. [3] CAI J F, CHAN R, NIKOLOVA M. Two-phase methods for deblurring images corrupted by impulse plus Gaussian noise[J]. Inverse Problem Imaging, 2008, 2:187-204. [4] LIU J, TAI X-C, HUANG H-Y, et al. A weighted dictionary learning model for denoising images corrupted by mixed noise[J]. IEEE Trans Image Processing, 2013,22(3):1108-1120. [5] GONG Z, SHEN Z W, TOH K C. Image restoration with mixed or unknown[J]. Multiscale Model Simul, 2014, 12(2):458-487. [6] CALATRONI L, CARLOS DE L R J, SCHÖNLIEB C B. Infimal convolution of data discrepancies for mixed noise removal[J]. SIAM J Imaging Sci, 2017, 10(3):1196-1233. [7] HANSON K M. Special topics in test methodology:Tomographic reconstruction of axially symmetric objects from a single dynamic radiograph[M]//Progress in Astronautics and Aeronautics, Vol. 155, Washington, 1993:687-698. [8] BACK N, SCHNEBERK D, MCMILAN C, et al. Research on computed tomography reconstructions from one or two radiographs:A report and the application to FXR radiography[R]. LLNL, 1995,UCLR-ID-120019, 1-58. [9] PICHOFF N. The new bounds of flash radiography[R], CLEFS CEA, 2006,54:58-66. [10] THOMPSON M W, HALVERSON D R, WISE G L. Robust detection in nominally Laplace noise[J]. IEEE Trans Commu, 1994, 42(/2/3/4):1651-1660. [11] BENNING M, BURGER M. Error estimates for general fidelities[J]. Electron Trans Numer Anal, 2011,38:44-68. [12] RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D,1992, 60(1-4):259-268. [13] CHAMBOLLE A, LIONS P. Image recovery via total variation minimization and related problems[J]. Numer Math, 1997,76:167-188. [14] NIKOLOVA M. A variational approach to remove outliers and impulse noise[J]. J Math Imaging, 2004, 20(1):99-120. [15] HINTERMVLLER M, LANGER A. Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1/L2 data fidelity in image processing[J]. SIAM J Imaging Sci, 2013, 6(4):2134-2173. [16] GONG Z, SHEN Z, TOH K C. Image restoration with mixed or unknown[J]. Multiscale Model Simul, 2014, 12(2):458-487. [17] CHAMBOLLE A, LIONS P L.Image recovery via total variation minimization and related problems[J]. Numer Math, 1997, 76:167-188. [18] CHAN T, MARQUINA A, MULET P. High-order total variation-based image restoration[J]. SIAM J Sci Comput, 2001,22(2):503-516. [19] LYSAKER M, LUNDERVOLD A, TAI X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Trans Image Process, 2003,12(12):1579-1590. [20] BERTOZZI A L, GREER J B. Low-curvature image simplifiers:Golobal regularity of smooth solutions and Laplacian limiting schemes[J]. Commun Pure Appl Math, 2004, 57(6):764-790. [21] LYSAKER M, TAI X C. Iterative image restoration combining total variation minimization and a second-order functional[J]. Int J Comput Vis, 2006, 66(1):5-18. [22] LI F, SHEN C M, FAN J, et al. Image restoration combining a total variational filter and a fourth-order filter[J]. J Vis Commun Image R, 2007, 18:322-330. [23] BREDIES K, KUNISCH K, POCK T. Total generalized variation[J]. SIAM J Imaging Sci, 2010,3(3):1-42. [24] WU T T, YANG Y F, PANG Z F. A modified fixed-point iterative algorithm for image restoration using fourth-order PDE model[J]. Applied Numer Math, 2012, 62:79-90. [25] BENNING M, BRUNE C, BURGER M, et al. Higher-order TV methods-enhancement via Bregman iteration[J]. J Sci Comput, 2013, 54(2-3):269-310. [26] PAPAFITSOROS K, SHCÖNLIEB C B. A combined first and second order variational approach for image reconstruction[J]. Journal of Math Imaging Vis, 2014, 48:308-338. [27] STEIDL G. Combined first and second order variational approaches for image processing[J]. Jahresber Dtsch Math-Ver, 2015, 177:133-160. [28] ASAKI T J, CHARTRAND R, VIXIE K R, WOHLBERG B. Abel inversion using total-variation regularization[J]. Inverse Problems, 2005, 21:1895-1903. [29] ABRAHAM R, BERGOUNIOUX M, TRÉLAT E. A penalization approach for tomographic reconstruction of binary axially symmetric objects[J]. Appl Math Optim, 2008, 58:345-371. [30] CHAN R H, LIANG H, WEI S H, et al. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph[J]. Inverse Problems & Imaging, 2015, 9(1):55-77. [31] IDIER J. Bayesian approach to inverse problems[M]. New York:Wiley, 2008. [32] BURGER B, MENNUCCI A C G, OSHER S, et al. Level set and PDE based reconstruction methods in imaging[M]. New York:Springer, 2008:1-70. [33] DEMENGEL F. Fornctions a hessian borne[J]. Ann Inst Fourier, 1985, 34:155-190. [34] LIU J, HUANG H Y, HUAN Z D, et al. Adaptive variational method for restoring color images with high density impulse noise[J]. Inter J Comput Vis, 2010, 90:131-149. [35] LIU J, ZHANG H L. Image segmentation using a local GMM in a variational framework[J]. J Math Imaging Vis, 2013,46:161-176. [36] GABAY D. Application of the method of multipliers to variational inequalites[M]//Fortin M, Glowinski R. Augmented Lagrange method:Applications to the solutions of boundary valued problems. 1983, North Holland, Amsterdam:299-331. [37] BERTSEKAS D P, TSITSIKLIS J N. Parallel and distributed computation:Numerical methods[M]. Belmont Massachusetts:Athena Scientific, 1997. [38] SETZER S. Operator splittings, Bregman methods and frame shrinkage in image processing[J]. Int J Cmput Vis, 2011, 92(3):265-280. [39] GOPI V P, PALANISAMY P, WAHID K A, et al. Micro-CT image reconstruction based on alternating direction augmented Lagrangian method and total variation[J]. Computerized Medical Imaging and Graphics, 2013,37:419-429. [40] BURGER M, SAWATZKY A, STEIDL G. First order algorithm in variational image processing[EB/OL]. 2014, arXiv:1412, 4237. [41] OSHER S, PARAGIOS N. Geometric level set methods in imaging, vision, and graphics[M]. New York:Springer-Verlag, 2003. [42] XU H, WEI S. A conjugate gradient algorithm for density reconstruction in high-energy X-ray radiography[J]. Chinese Journal of Computational Physice, 2006,23(2):144-150. |
[1] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[2] | Yaoli FANG, Yi WANG. An IMEX Method for 2-D Radiation Hydrodynamics [J]. Chinese Journal of Computational Physics, 2021, 38(4): 401-417. |
[3] | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 379-392. |
[4] | ZHANG Lin, GE Yongbin. High-order Fully Implicit Scheme and Multigrid Method for Two-dimensional Semilinear Diffusion Reaction Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 307-319. |
[5] | DING Qi, SHANG Yueqiang. Parallel Finite Element Algorithms Based on Two-grid Discretization for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 10-18. |
[6] | LIU Quan, NI Guoxi, NIU Xiao, HU Jun. A Semi-Lagrangian Conservative Scheme for Vlasov Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 19-25. |
[7] | ZHAO Guozhong, YU Xijun, GUO Hongping, DONG Ziming. A Local Discontinuous Petrov-Galerkin Method for Partial Differential Equations with High Order Derivatives [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 517-532. |
[8] | GUO Zitao, FENG Renzhong. A High Order Accuracy Corrected Hermite-ENO Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 141-152. |
[9] | FU Fangfang, KONG Linghua, WANG Lan, XU Yuan, ZENG Zhankuan. High Order Compact Splitting Multisymplectic Schemes for 1D Gross-Pitaevskii Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 657-667. |
[10] | ZHANG Shouhui, LIANG Dong. A Strang-type Alternating Segment Domain Decomposition Method for Two-dimensional Parabolic Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 413-428. |
[11] | LI Lingxiao. Parallel Finite Element Computation of Incompressible Viscous Flows Based on Block Preconditioning Strategy [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 151-160. |
[12] | GE Zhihao, WU Huili. A Penalized Finite Element Method of Nonlocal Diffusion Problem with Volume Constraints [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 161-168. |
[13] | YANG Xiaocheng, SHANG Yueqiang. Two-level Subgrid Stabilized Methods for Navier-Stokes Equations at High Reynolds Numbers [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 657-665. |
[14] | ZHU Xiaogang, NIE Yufeng, WANG Jungang, YUAN Zhanbin. A Characteristic Finite Element Method for Fractional Convection-Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 417-424. |
[15] | CAO Fujun, YAO Yanzhong. Conservative Positivity-Preserving Algorithm for Kershaw Scheme of Anisotropic Diffusion Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 283-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.