Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (5): 555-564.DOI: 10.19596/j.cnki.1001-246x.8394
Special Issue: 多孔介质毛细动力学研究
• Special Topics on Capillary Dynamics in Porous Media • Previous Articles Next Articles
Received:
2021-05-08
Online:
2021-09-25
Published:
2022-03-24
CLC Number:
Yunxuan ZHU, Zhiping LI. Imbibition Behavior and Fluid Dynamic Distribution of Longmaxi Formation Shale in Pengshui Area[J]. Chinese Journal of Computational Physics, 2021, 38(5): 555-564.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8394
岩样编号 | 直径/cm | 长度/cm | 密度/(g·cm-3) | 孔隙度/% | 渗透率/(10-3 μm2) |
1 | 2.53 | 2.72 | 2.62 | 3.91 | 0.007 |
2 | 2.60 | 2.68 | 2.62 | 3.99 | 0.007 |
3 | 2.55 | 2.72 | 2.60 | 3.87 | 0.005 |
4 | 2.59 | 2.67 | 2.57 | 3.75 | 0.005 |
5 | 2.53 | 2.71 | 2.64 | 4.25 | 0.006 |
6 | 2.50 | 2.69 | 2.63 | 3.80 | 0.006 |
7 | 2.54 | 2.70 | 2.63 | 3.77 | 0.007 |
8 | 2.51 | 2.66 | 2.56 | 3.89 | 0.006 |
Table 1 Petrophysical properties of core samples
岩样编号 | 直径/cm | 长度/cm | 密度/(g·cm-3) | 孔隙度/% | 渗透率/(10-3 μm2) |
1 | 2.53 | 2.72 | 2.62 | 3.91 | 0.007 |
2 | 2.60 | 2.68 | 2.62 | 3.99 | 0.007 |
3 | 2.55 | 2.72 | 2.60 | 3.87 | 0.005 |
4 | 2.59 | 2.67 | 2.57 | 3.75 | 0.005 |
5 | 2.53 | 2.71 | 2.64 | 4.25 | 0.006 |
6 | 2.50 | 2.69 | 2.63 | 3.80 | 0.006 |
7 | 2.54 | 2.70 | 2.63 | 3.77 | 0.007 |
8 | 2.51 | 2.66 | 2.56 | 3.89 | 0.006 |
岩样编号 | 半径均值/μm | 仪器最大退出效率/% | 排驱压力/MPa | 汞饱和度/% | 孔喉半径/μm | 孔喉分布 | 渗透率分布 | ||||||||
最大 | 最终剩余 | 最大 | 平均 | 中值 | 峰位/μm | 峰值/% | 峰位/μm | 峰值/% | |||||||
1 | 0.015 | 91.772 | 13.775 | 97.955 | 8.060 | 0.053 | 0.013 | 0.009 | 0.006 | 18.909 | 0.040 | 56.847 | |||
2 | 0.012 | 88.374 | 13.776 | 95.751 | 11.132 | 0.053 | 0.012 | 0.008 | 0.006 | 21.117 | 0.040 | 41.743 |
Table 2 Test results of capillary pressure curves
岩样编号 | 半径均值/μm | 仪器最大退出效率/% | 排驱压力/MPa | 汞饱和度/% | 孔喉半径/μm | 孔喉分布 | 渗透率分布 | ||||||||
最大 | 最终剩余 | 最大 | 平均 | 中值 | 峰位/μm | 峰值/% | 峰位/μm | 峰值/% | |||||||
1 | 0.015 | 91.772 | 13.775 | 97.955 | 8.060 | 0.053 | 0.013 | 0.009 | 0.006 | 18.909 | 0.040 | 56.847 | |||
2 | 0.012 | 88.374 | 13.776 | 95.751 | 11.132 | 0.053 | 0.012 | 0.008 | 0.006 | 21.117 | 0.040 | 41.743 |
渗吸条件 | 渗吸量/ml | 初始渗吸速率/(ml·h-1) |
0.1 MPa未破胶 | 1.3 | 0.23 |
0.1 MPa破胶 | 1.35 | 0.28 |
5 MPa未破胶 | 1.4 | 0.26 |
5 MPa破胶 | 1.43 | 0.32 |
10 MPa未破胶 | 1.48 | 0.31 |
10 MPa破胶 | 1.52 | 0.35 |
Table 3 Imbibition results of different fracturing fluids
渗吸条件 | 渗吸量/ml | 初始渗吸速率/(ml·h-1) |
0.1 MPa未破胶 | 1.3 | 0.23 |
0.1 MPa破胶 | 1.35 | 0.28 |
5 MPa未破胶 | 1.4 | 0.26 |
5 MPa破胶 | 1.43 | 0.32 |
10 MPa未破胶 | 1.48 | 0.31 |
10 MPa破胶 | 1.52 | 0.35 |
1 | DING M C, WU M L, LI X, et al. Characteristics of transient pressure for multiple fractured horizontal wells in fractal fractured shale gas reservoirs[J]. Chinese Journal of Computational Physics, 2019, 36 (5): 559- 568. |
2 | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41 (1): 1- 14. |
3 | 王雷, 徐康泰. 页岩储层水力压裂体积改造实现方法研究[J]. 科学技术与工程, 2014, 14 (36): 183- 188. |
4 | 申颍浩, 葛洪魁, 宿帅, 等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学, 2017, 47 (11): 84- 94. |
5 | DU D F, WANG Y Y, FU J G, et al. Shale gas seepage mechanism and transient pressure analysis[J]. Chinese Journal of Computational Physics, 2015, 32 (1): 51- 57. |
6 | 杨柳, 葛洪魁, 申颍浩, 等. 一种评价页岩储层压裂液吸收的新方法[J]. 科学技术与工程, 2016, 16 (24): 48- 53. |
7 |
LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid-Zeitschrift, 1918, 23 (1): 15- 22.
DOI |
8 | WASHBURN E W. The dynamics of capillary flow[J]. Physical Review Journals Archive, 1921, 17 (3): 273- 283. |
9 | HANDY L L. Determination of effective capillary pressures for porous media from imbibition data[J]. Transactions of the AIME, 1960, 219 (5): 75- 80. |
10 | CAI J C, YU B M, MEI M F, et al. Capillary rise in a single tortuous capillary[J]. Chinese Physics Letters, 2010, 27 (5): 148- 151. |
11 | CAI J C, YU B M, ZOU M Q, et al. Fractal characterization of spontaneous co-current imbibition in porous media[J]. Energy & Fuels, 2010, 24 (3): 1860- 1867. |
12 |
ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental investigation of spontaneous imbibition in gas shales[J]. Journal of Petroleum Science and Engineering, 2013, 111, 87- 97.
DOI |
13 |
ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. Shale-fluid interactions during forced imbibition and flow-back[J]. Journal of Petroleum Science and Engineering, 2019, 172, 443- 453.
DOI |
14 | SUN Y P, BAI B J, WEI M Z. Microfracture and surfactant impact on linear cocurrent brine imbibition in gas-saturated shale[J]. Energy & Fuels, 2015, 29 (3): 1438- 1446. |
15 | HABIBI A, DEHGHANPOUR H, BINAZADEH M, et al. Advances in understanding wettability of tight oil formations: A Montney case study[J]. SPE Reservoir Evaluation & Engineering, 2016, 19 (04): 583- 603. |
16 | AKBARABADI M, SARAJI S, PIRI M, et al. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks[J]. Advances in Water Resources, 2017, 107, 160- 179. |
17 | 顾雅頔, 喻高明, 李桂姗. 低渗致密砂岩储层孔隙结构特征及自发渗吸实验[J]. 科学技术与工程, 2019, 19 (32): 139- 145. |
18 | ZHOU H D, ZHANG Q S, DAI C L, et al. Experimental investigation of spontaneous imbibition process of nanofluid in ultralow permeable reservoir with nuclear magnetic resonance[J]. Chemical Engineering Science, 2019, 201, 212- 221. |
19 | LIU J R, SHEN J J, WANG X K, et al. Experimental study of wettability alteration and spontaneous imbibition in Chinese shale oil reservoirs using anionic and nonionic surfactants[J]. Journal of Petroleum Science and Engineering, 2019, 175, 624- 633. |
20 | WANG F Y, ZHAO J Y. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone: Upscaling from pore-scale to core-scale with fractal approach[J]. Journal of Petroleum Science and Engineering, 2019, 178, 376- 388. |
21 | 冀昆, 郭少斌, 李新, 等. 溶孔发育的含沥青质碳酸盐岩核磁共振特征分析—以四川盆地高磨地区龙王庙组储层为例[J]. 天然气地球科学, 2017, 28 (8): 1257- 1263. |
22 | CHENG Z L, WANG Q, NING Z F, et al. Experimental investigation of countercurrent spontaneous imbibition in tight sandstone using nuclear magnetic resonance[J]. Energy & Fuels, 2018, 32 (6): 6507- 6517. |
23 | 王敉邦, 蒋林宏, 包建银, 等. 渗吸实验描述与方法适用性评价[J]. 石油化工应用, 2015, 34 (12): 102- 105. |
24 | 任凯, 葛洪魁, 杨柳, 等. 页岩自吸实验及其在返排分析中的应用[J]. 科学技术与工程, 2015, 15 (30): 106- 109. |
25 | GE X M, FAN Y R, ZENG Q D, et al. Analysis of NMR transversal relaxation based on ADI-FDTD numerical simulation[J]. Chinese Journal of Computational Physics, 2013, 30 (2): 237- 243. |
26 | 姚艳斌, 刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术, 2016, 44 (6): 14- 22. |
27 | 朱云轩. 彭水地区常压页岩气藏物性特征及压裂液渗吸规律研究[D]. 北京: 中国地质大学(北京), 2020. |
[1] | Yuanqiang ZHU, Saisai JIN, Qingqing SUN. Adsorption Characteristics of N2 on Shale Kerogen [J]. Chinese Journal of Computational Physics, 2021, 38(6): 707-712. |
[2] | Jianchao CAI. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media [J]. Chinese Journal of Computational Physics, 2021, 38(5): 505-512. |
[3] | Zhenjie ZHANG, Jianyuan FENG, Jianchao CAI, Kangli CHEN, Qingbang MENG. Driving Force for Spontaneous Imbibition Under Different Boundary Conditions [J]. Chinese Journal of Computational Physics, 2021, 38(5): 513-520. |
[4] | Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels [J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554. |
[5] | Jianchun GUO, Liang TAO, Chi CHEN, Yuhang ZHAO, Songgen HE, Yuxuan LIU. Water Imbibition Law of Longmaxi Formation Shale in the South of Sichuan Basin [J]. Chinese Journal of Computational Physics, 2021, 38(5): 565-572. |
[6] | DING Mingcai, WU Minglu, LI Xuan, YAO Jun. Characteristics of Transient Pressure for Multiple Fractured Horizontal Wells in Fractal Fractured Shale Gas Reservoirs [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 559-568. |
[7] | XU Guoliang, ZHU Yiping, FANG Lin, DU Yang, HUANG Xiaoming. Three-dimensional Fractal Reconstruction Technique and Leakage Characteristics of Micro-pore Sealing Interfaces [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 440-448. |
[8] | DU Dianfa, WANG Yanyan, FU Jingang, SUN Zhaobo, QIAO Ni. Shale Gas Seepage Mechanism and Transient Pressure Analysis [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(1): 51-57. |
[9] | GE Xinmin, FAN Yiren, ZENG Qingdong, WANG Mingfang, XU Yongjun. Analysis of NMR Transversal Relaxation Based on ADI-FDTD Numerical Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(2): 237-243. |
[10] | WENG Aihua, GAO Lijuan. Surface Nuclear Magnetic Resonance Imaging in Layered Electrically Conductive Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(2): 203-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.