Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (3): 371-378.DOI: 10.19596/j.cnki.1001-246x.8400
• Research Reports • Previous Articles
Yingdong LU, Duqu WEI*()
Received:
2021-05-18
Online:
2022-05-25
Published:
2022-09-02
Contact:
Duqu WEI
Yingdong LU, Duqu WEI. Power System Chaos Prediction Based on DLSTM with Genetic Attention Mechanism[J]. Chinese Journal of Computational Physics, 2022, 39(3): 371-378.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8400
符号 | 参数 | 数值 | 符号 | 参数 | 数值 | |
xd | 发电机d轴同步电抗 | 1 | Efdmax | 励磁控制器输出上限 | 5 | |
x′d | 发电机d轴瞬变电抗 | 0.4 | Efdmin | 励磁控制器输出下限 | 0 | |
T′d0 | 发电机d轴励磁绕组时间常数 | 10 | Efd0 | 限制器输入参考电压 | 2 | |
M | 发电机转动惯量 | 10 | TA | 励磁控制器时间常数 | 1 |
Table 1 Symbols and values of excitation-limited power system parameters
符号 | 参数 | 数值 | 符号 | 参数 | 数值 | |
xd | 发电机d轴同步电抗 | 1 | Efdmax | 励磁控制器输出上限 | 5 | |
x′d | 发电机d轴瞬变电抗 | 0.4 | Efdmin | 励磁控制器输出下限 | 0 | |
T′d0 | 发电机d轴励磁绕组时间常数 | 10 | Efd0 | 限制器输入参考电压 | 2 | |
M | 发电机转动惯量 | 10 | TA | 励磁控制器时间常数 | 1 |
模型 | RMSE | MAE |
DLSTM-GA | 0.006 765 | 0.005 720 |
DLSTM-Attention | 0.010 023 | 0.008 612 |
DLSTM | 0.019 374 | 0.0126 98 |
Multi-RNN | 0.028 503 | 0.018 181 |
DGRU | 0.063 732 | 0.039 145 |
DA-RNN | 0.052 671 | 0.032 445 |
LSTM-Attention | 0.108 452 | 0.082 951 |
LSTM | 0.186 159 | 0.151 927 |
Table 2 Best results of DLSTM-GA, DLSTM-Attention, DLSTM, Multi-RNN, DGRU, DA-RNN, LSTM-Attention and LSTM
模型 | RMSE | MAE |
DLSTM-GA | 0.006 765 | 0.005 720 |
DLSTM-Attention | 0.010 023 | 0.008 612 |
DLSTM | 0.019 374 | 0.0126 98 |
Multi-RNN | 0.028 503 | 0.018 181 |
DGRU | 0.063 732 | 0.039 145 |
DA-RNN | 0.052 671 | 0.032 445 |
LSTM-Attention | 0.108 452 | 0.082 951 |
LSTM | 0.186 159 | 0.151 927 |
1 |
|
2 |
DOI |
3 |
DOI |
4 |
|
5 |
|
6 |
|
7 |
DOI |
8 |
|
9 |
DOI |
10 |
|
11 |
|
12 |
|
13 |
DOI |
14 |
DOI |
15 |
WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016(1): 606-615.
|
16 |
|
17 |
DOI |
18 |
|
19 |
DOI |
20 |
DOI |
21 |
CHAKRABORTY B. Genetic algorithm with fuzzy fitness function for feature selection[C]//Proceedings of the 2002 IEEE International Symposium on IEEE, 2002, 1(1): 315-319.
|
22 |
|
23 |
DOI |
24 |
|
25 |
|
26 |
QIN Y, SONG D, CHEN H, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), 2017(1): 2627-2633.
|
27 |
|
[1] | ZHANG Qingfu, YAO Jun, HUANG Zhaoqin, LI Yang, WANG Yueying. A Multiscale Deep Learning Model for Fractured Porous Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 665-672. |
[2] | ZHOU Haiping, CAI Shaohong. A Cascading Failure Model for Power Systemes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(2): 313-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.