Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (4): 465-478.DOI: 10.19596/j.cnki.1001-246x.8480
Previous Articles Next Articles
Can HUANG1,2(), Leng TIAN1,2,*(
), Heng-li WANG1,2, Jia-xin WANG1,2, Li-li JIANG1,2
Received:
2021-11-19
Online:
2022-07-25
Published:
2022-11-17
Contact:
Leng TIAN
Can HUANG, Leng TIAN, Heng-li WANG, Jia-xin WANG, Li-li JIANG. A Single Well Production Forecasting Model of Reservoir Based on Conditional Generative Adversarial Net[J]. Chinese Journal of Computational Physics, 2022, 39(4): 465-478.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8480
模型 | 平均绝对百分比误差/% | 过拟合比 | |
验证集 | 测试集 | ||
CGAN | 4.68 | 7.20 | 1.027 |
FCNN | 4.46 | 9.79 | 1.059 |
LSTM | 2.16 | 8.01 | 1.064 |
RF | 5.90 | 8.92 | 1.033 |
Table 1 Average absolute percentage errors of yield forecast
模型 | 平均绝对百分比误差/% | 过拟合比 | |
验证集 | 测试集 | ||
CGAN | 4.68 | 7.20 | 1.027 |
FCNN | 4.46 | 9.79 | 1.059 |
LSTM | 2.16 | 8.01 | 1.064 |
RF | 5.90 | 8.92 | 1.033 |
1 |
MALE F, AIKEN C, DUNCAN I J. Using data analytics to assess the impact of technology change on production forecasting[C]//Proceedings of the 2018 Society of Petroleum Engineers Conference on Annual Technical, 2018: 1-14.
|
2 |
DOI |
3 |
DOI |
4 |
DOI |
5 |
BOOMER R J. Predicting production using a neural network (artificial intelligence beats human intelligence)[C]//Proceedings of the 1995 Society of Petroleum Engineers Conference on Petroleum Computer, 1995: 195-204.
|
6 |
吴新根, 葛家理. 应用人工神经网络预测油田产量[J]. 石油勘探与开发, 1994, (03): 75- 78.
|
7 |
DOI |
8 |
BANSAL Y, ERTEKIN T, KARPYN Z, et al. Forecasting well performance in a discontinuous tight oil reservoir using artificial neural networks[C]//Proceedings of the 2013 Society of Petroleum Engineers Conference on Unconventional Resources, 2013: 1-12.
|
9 |
CAO Q, BANERJEE R, GUPTA S, et al. Data driven production forecasting using machine leaning[C]//Proceedings of the 2016 Society of Petroleum Engineers Conference on Argentina Exploration and Production of Unconventional Resources Symposium, 2016: 1-10.
|
10 |
WANG S, CHEN S. A comprehensive evaluation of well completion and production performance in bakken shale using data-driven approaches[C]//Proceedings of the 2016 Society of Petroleum Engineers Conference on Asia Pacific Hydraulic Fracturing, 2016: 1-25.
|
11 |
DOI |
12 |
SUN J, MA X, KAZI M. Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells[C]//Proceedings of the 2018 Society of Petroleum Engineers Conference on Western Regional Meeting, 2018: 1-11.
|
13 |
|
14 |
王洪亮, 穆龙新, 时付更, 等. 基于循环神经网络的油田特高含水期产量预测方法[J]. 石油勘探与开发, 2020, 47 (05): 1009- 1015.
|
15 |
DOI |
16 |
LIAO L, ZENG Y, LIANG Y, et al. Data mining: A novel strategy for production forecast in tight hydrocarbon resource in Canada by random forest analysis[C]//Proceedings of the 2020 International Conference on Petroleum Technology, 2020: 1-11.
|
17 |
陈森朋, 吴佳, 陈修云. 基于强化学习的超参数优化方法[J]. 小型微型计算机系统, 2020, 41 (04): 679- 684.
|
18 |
邓帅. 基于改进贝叶斯优化算法的CNN超参数优化方法[J]. 计算机应用研究, 2019, 36 (07): 1984- 1987.
|
19 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
|
20 |
|
21 |
林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45 (11): 52- 60.
|
22 |
蒋华伟, 张磊. 基于长短期记忆生成对抗网络的小麦品质多指标预测模型[J]. 电子与信息学报, 2020, 42 (12): 2865- 2872.
|
23 |
|
24 |
|
25 |
崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29 (10): 3068- 3090.
|
26 |
陈文兵, 管正雄, 陈允杰. 基于条件生成式对抗网络的数据增强方法[J]. 计算机应用, 2018, 38 (11): 3305- 3311.
|
[1] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[2] | Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion [J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578. |
[3] | Jian PAN, Zhaoli GUO, Songze CHEN. A Compound Neural Network for Learning Partial Differential Equations from Noisy Data [J]. Chinese Journal of Computational Physics, 2022, 39(2): 223-232. |
[4] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[5] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
[6] | Jia LUO, Liang SUN, Yinhu QIAO. Dynamical Analysis and Circuit Implementation of a Memristor Synapse-coupled Ring Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(1): 109-117. |
[7] | Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks [J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430. |
[8] | ZHOU Qian, WEI Duqu. Firing Activity of Memristive Neural Network Under Field Coupling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 750-756. |
[9] | LU Xinrui, HUANG Handong, LI Shuai, YIN Long. Salt-body Classification Method Based on U-Net [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 327-334. |
[10] | ZHOU Yuhao, LIU Huiqing, QI Peng, ZHAO Meng, CHEN Yu. Forecast of Oil Production in Fractured-Vuggy Reservoir by Using Recurrent Neural Networks [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 668-674. |
[11] | GOU Xueyin, GUO Lixin, ZHANG Lianbo. Support Vector Machine and Neural Network in Inversion of Rough Surface Parameters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(1): 75-84. |
[12] | LI Xu, YU Jihui, LI Yongming, WANG Quandi. Artificial Neural Network Prediction of Crosstalk Coupling Between Interconnecting Wires [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 311-316. |
[13] | MENG Juan, WANG Xingyuan. Robust Anti-synchronization of a Class of Delayed Chaotic Neural Networks [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(2): 247-252. |
[14] | WANG Xingyuan, TAN Guilin. Nonlinear Prediction and Analysis of EEG in a Liley Model [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(5): 612-618. |
[15] | ZHANG Quan-hu, ZHANG Qi-xin, LÜ Feng, LI Ze, LI Kun-peng, WANG Zhong-qi, ZHAO Xue-jun, SUI Hong-zhi. Reconstruction Algorithm of Radial Function Neural Networks for Linear Attenuation Coefficients [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(5): 439-442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.