Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (6): 666-676.DOI: 10.19596/j.cnki.1001-246x.8654
Previous Articles Next Articles
Cheng GUO(), Pengdan CHENG, Yahui WANG(
)
Received:
2022-10-18
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yahui WANG
CLC Number:
Cheng GUO, Pengdan CHENG, Yahui WANG. Improved Fifth-order WENO-Z+ Schemes Based on Modified Stencil[J]. Chinese Journal of Computational Physics, 2023, 40(6): 666-676.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8654
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 2.57 × 10-4 | 3.40 × 10-4 | 3.32 × 10-4 | 3.13 × 10-4 | |||||||
40 | 8.04 × 10-6 | 5.00 | 9.60 × 10-6 | 5.15 | 9.20 × 10-6 | 5.17 | 9.01 × 10-6 | 5.12 | |||
80 | 2.44 × 10-7 | 5.04 | 2.56 × 10-7 | 5.23 | 2.50 × 10-7 | 5.20 | 2.44 × 10-7 | 5.21 | |||
160 | 8.07 × 10-9 | 4.92 | 7.61 × 10-9 | 5.07 | 7.21 × 10-9 | 5.11 | 6.97 × 10-9 | 5.13 | |||
320 | 2.47 × 10-10 | 5.03 | 2.38 × 10-10 | 5.00 | 2.16 × 10-10 | 5.06 | 2.06 × 10-10 | 5.08 |
Table 1 L1 errors and convergence rates at t=2 of different schemes for the linear advection Eq.(20) with the initial data ① of Eq.(21)
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 2.57 × 10-4 | 3.40 × 10-4 | 3.32 × 10-4 | 3.13 × 10-4 | |||||||
40 | 8.04 × 10-6 | 5.00 | 9.60 × 10-6 | 5.15 | 9.20 × 10-6 | 5.17 | 9.01 × 10-6 | 5.12 | |||
80 | 2.44 × 10-7 | 5.04 | 2.56 × 10-7 | 5.23 | 2.50 × 10-7 | 5.20 | 2.44 × 10-7 | 5.21 | |||
160 | 8.07 × 10-9 | 4.92 | 7.61 × 10-9 | 5.07 | 7.21 × 10-9 | 5.11 | 6.97 × 10-9 | 5.13 | |||
320 | 2.47 × 10-10 | 5.03 | 2.38 × 10-10 | 5.00 | 2.16 × 10-10 | 5.06 | 2.06 × 10-10 | 5.08 |
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 4.36 × 10-3 | 4.19 × 10-3 | 1.95 × 10-3 | 1.75 × 10-3 | |||||||
40 | 1.37 × 10-4 | 4.98 | 1.31 × 10-4 | 4.99 | 6.10 × 10-5 | 4.99 | 5.47 × 10-5 | 5.00 | |||
80 | 4.58 × 10-6 | 5.00 | 3.58 × 10-6 | 5.19 | 1.56 × 10-6 | 5.29 | 1.50 × 10-6 | 5.19 | |||
160 | 1.43 × 10-7 | 5.00 | 1.16 × 10-7 | 4.95 | 4.41 × 10-8 | 5.14 | 4.23 × 10-8 | 5.15 | |||
320 | 4.44 × 10-9 | 5.03 | 3.57 × 10-9 | 5.02 | 1.38 × 10-9 | 5.00 | 1.32 × 10-9 | 5.00 |
Table 2 L1 errors and convergence rates at t=2 of different schemes for the linear advection Eq.(20) with the initial data ② of Eq.(21)
N | WENO-Z+ | WENO-Z+M | WENO-MS-Z+ | WENO-MS-Z+M | |||||||
L1 error | order | L1 error | order | L1 error | order | L1 error | order | ||||
20 | 4.36 × 10-3 | 4.19 × 10-3 | 1.95 × 10-3 | 1.75 × 10-3 | |||||||
40 | 1.37 × 10-4 | 4.98 | 1.31 × 10-4 | 4.99 | 6.10 × 10-5 | 4.99 | 5.47 × 10-5 | 5.00 | |||
80 | 4.58 × 10-6 | 5.00 | 3.58 × 10-6 | 5.19 | 1.56 × 10-6 | 5.29 | 1.50 × 10-6 | 5.19 | |||
160 | 1.43 × 10-7 | 5.00 | 1.16 × 10-7 | 4.95 | 4.41 × 10-8 | 5.14 | 4.23 × 10-8 | 5.15 | |||
320 | 4.44 × 10-9 | 5.03 | 3.57 × 10-9 | 5.02 | 1.38 × 10-9 | 5.00 | 1.32 × 10-9 | 5.00 |
Fig.7 Density contours of double Mach reflection problem on 961 × 241 grid points at t=0.2, CFL=0.5 (a) WENO-Z+; (b) WENO-MS-Z+; (c) WENO-Z+M; (d) WENO-MS-Z+M
1 |
LIU XD , OSHER S , CHAN T . Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115 (1): 200- 212.
DOI |
2 |
HARREN A , ENGQUIST B , OSHER S , et al. Uniformly high-order accurate essentially non-oscillatory schemes Ⅲ[J]. Journal of Computational Physics, 1987, 71 (2): 231- 303.
DOI |
3 |
JIANG G S , SHU C W . Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126 (1): 202- 228.
DOI |
4 |
HENRICK A K , ASLAM T D , POWERS J M . Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207 (2): 542- 567.
DOI |
5 |
BORGES R , CARMONA M , COSTA B , et al. An improved WENO scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227 (6): 3191- 3211.
DOI |
6 |
HA Y , KIM C H , LEE Y J , et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J]. Journal of Computational Physics, 2013, 232 (1): 68- 86.
DOI |
7 | FAN P , SHEN Y Q , TIAN B L , et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269 (1): 329- 354. |
8 | YAN Z G , LIU H Y , MAO M L , et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers and Fluids, 2016, 127 (1): 226- 240. |
9 |
CHANG H K , YOUNGSOO H , JUNGHO Y . Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2016, 67 (1): 299- 323.
DOI |
10 |
CASTRO M , COSTA B , DON W S . High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230 (5): 1766- 1792.
DOI |
11 | DON W S , BORGES R . Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J]. Journal of Computational Physics, 2013, 250 (4): 347- 372. |
12 |
ARANDIGA F , BAEZA A , BELDA A M , et al. Analysis of WENO schemes for full and global accuracy[J]. SIAM Journal on Numerical Analysis, 2011, 49 (2): 893- 915.
DOI |
13 | BORGES R. Recent results on the Improved WENO-Z+ Scheme[M]//Bittencourt M, Dumont N, Hesthaven J, eds. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_39. |
14 | WANG Yahui . A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 224- 236. |
15 |
WANG Y , DU Y , ZHAO K , et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2019, 81 (2): 898- 922.
DOI |
16 |
WANG Y , DU Y , ZHAO K , et al. A new 6th-order WENO scheme with modified stencils[J]. Computers and Fluids, 2020, 208, 104625.
DOI |
17 | ZENG F , SHEN Y , LIU SP . A perturbational weighted essentially non-oscillatory scheme[J]. Computers and Fluids, 2018, 172 (8): 196- 208. |
18 | GUO Z T , FENG R Z . A high order accuracy corrected hermite-ENO scheme[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 141- 152. |
19 | GUO Y , TIAN Q , LIANG X , et al. A hybrid WENO scheme for resolution optimization[J]. Chinese Journal of Computational Physics, 2018, 35 (4): 397- 404. |
20 | ACKER F , BORGES R , COSTA B . An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313 (5): 726- 753. |
21 |
XU W , WU W . An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75 (3): 1808- 1841.
DOI |
22 | XU W , KONG X , WU W . An improved third-order WENO-Z+3 scheme and its application[J]. Chinese Journal of Computational Physics, 2018, 35 (1): 13- 21. |
23 |
LUO Xin , WU Songping . An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2021, 445, 110608.
DOI |
24 | SHU C W , OSHER S . Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J]. Journal of Computational Physics, 1989, 83 (3): 32- 78. |
25 |
SOD G . A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27 (1): 1- 31.
DOI |
26 |
LAX P D . Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7 (1): 159- 193.
DOI |
27 | WOODWARD P , COLELLA P . The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54 (1): 447- 465. |
[1] | Supei ZHENG, Mangmang JIAN, Jianhu FENG, Mengqing ZHAI. Sign Preserving WENO-AO-type Central Upwind Schemes [J]. Chinese Journal of Computational Physics, 2022, 39(6): 677-686. |
[2] | LI Li, LIU Xiaoyan, LI Xinliang, TIAN Baolin, LIANG Xian, HA Jincai. On Statistical Spectral Property of Nonlinear Weights in High Order Schemes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 127-140. |
[3] | GUO Zitao, FENG Renzhong. A High Order Accuracy Corrected Hermite-ENO Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 141-152. |
[4] | ZHAO Fengxiang, PAN Liang, WANG Shuanghu. Weighted Essentially Non-oscillatory Schemes on Unstructured Quadrilateral Meshes [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 525-534. |
[5] | CHENG Xiaohan, NIE Yufeng, CAI Li, FENG Jianhu. Entropy Stable Scheme Based on Moving Meshesfor Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 175-182. |
[6] | REN Jiong, FENG Jianhu, LIU Youqiong, LIANG Nan. High Resolution Entropy Consistent Schemes for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(5): 539-551. |
[7] | TANG Lingyan, SONG Songhe. An Adaptive Multiresolution Scheme for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(2): 155-164. |
[8] | FENG Tao, YU Xijun, AN Hengbin, CUI Xia, WU Di, LI Zhenzhen. Adaptive Discontinuous Galerkin Method with Lax-Wendroff Type Time Discretization and Three-dimensional Nonconforming Tetrahedral Mesh for Euler Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(6): 791-798. |
[9] | CHEN Dawei, YU Xijun. RKCVDFEM for One-dimensional Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(4): 501-509. |
[10] | XU Yun, YU Xijun. Adaptive Discontinuous Galerkin Methods for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 159-168. |
[11] | HU Yanmei, CHEN Jianzhong, FENG Jianhu. A Fifth-order Semi-discrete Central-upwind Scheme for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(1): 29-35. |
[12] | CHEN Jian-zhong, SHI Zhong-ke. A Third Order Semi-discrete Central-upwind Scheme for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 23(3): 273-280. |
[13] | ZHENG Hua-sheng, ZHAO Ning. A High Order Accurate TVD Difference Scheme for Hyperbolic Conservation Laws [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 22(1): 13-18. |
[14] | YU Xi-jun, FU Hong-yuan. A TAYLOR-GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(6): 611-618. |
[15] | WANG Jian-li, REN Yu-xin, SHEN Meng-yu. THE ANALYSIS OF SEVERAL FLUX SPLITTING SCHEME BASED ON SPLINE INTERPOLATION FINITE VOLUME SCHEME [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(4): 421-425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.