1 |
CAHILL D G , FORD W K , GOODSON K E , et al. Nanoscale thermal transport[J]. Journal of Applied Physics, 2003, 93 (2): 793- 818.
DOI
|
2 |
CAHILL D G , BRAUN P V , CHEN G , et al. Nanoscale thermal transport.Ⅱ.2003-2012[J]. Applied Physics Reviews, 2014, 1 (1): 011305.
DOI
|
3 |
段文晖, 张刚. 纳米材料热传导[M]. 北京: 科学出版社, 2017.
|
4 |
中国科学院. 中国学科发展战略-电子设备热管理[M]. 北京: 科学出版社, 2022.
|
5 |
SWARTZ E T , POHL R O . Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61 (3): 605- 668.
DOI
|
6 |
CHEN Jie , XU Xiangfan , ZHOU Jun , et al. Interfacial thermal resistance: Past, present, and future[J]. Reviews of Modern Physics, 2022, 94 (2): 025002.
DOI
|
7 |
KOVÁCS R . Heat equations beyond Fourier: From heat waves to thermal metamaterials[J]. Physics Reports, 2024, 1048, 1- 75.
DOI
|
8 |
GUO Yangyu , WANG Moran . Phonon hydrodynamics and its applications in nanoscale heat transport[J]. Physics Reports, 2015, 595, 1- 44.
DOI
|
9 |
郭洋裕, 王沫然. 声子水动力学: 进展、应用与展望[J]. 中国科学(物理学力学天文学), 2017, 47 (7): 110- 134.
|
10 |
ZHANG Zhongwei , GUO Yangyu , BESCOND M , et al. Coherent thermal transport in nano-phononic crystals: An overview[J]. APL Materials, 2021, 9 (8): 081102.
DOI
|
11 |
ANUFRIEV R , MAIRE J , NOMURA M . Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale[J]. APL Materials, 2021, 9 (7): 070701.
DOI
|
12 |
MA Dengke , LI Xiuling , ZHANG Lifa . Tuning thermal transport via phonon localization in nanostructures[J]. Chinese Physics B, 2020, 29 (12): 126502.
DOI
|
13 |
LUO Tianluo , DING Yafei , WEI Baojie , et al. Phononic thermal conduction and thermal regulation in low-dimensional micro-nano scale systems: Nonequilibrium statistical physics problems from chip heat dissipation[J]. Acta Physica Sinica, 2023, 72 (23): 234401.
DOI
|
14 |
CHEN Gang . Non-Fourier phonon heat conduction at the microscale and nanoscale[J]. Nature Reviews Physics, 2021, 3 (8): 555- 569.
DOI
|
15 |
曹炳阳. 纳米结构的非傅里叶导热[M]. 北京: 科学出版社, 2023.
|
16 |
GINGERICH D B , MAUTER M S . Quantity, quality, and availability of waste heat from United States thermal power generation[J]. Environmental Science & Technology, 2015, 49 (14): 8297- 8306.
|
17 |
GE Bangzhi , LEE H , JINO I M , et al. Engineering an atomic-level crystal lattice and electronic band structure for an extraordinarily high average thermoelectric figure of merit in n-type PbSe[J]. Energy & Environmental Science, 2023, 16 (9): 3994- 4008.
|
18 |
TAN Gangjian , ZHAO Lidong , G.KANATZIDIS M . Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116 (19): 12123- 12149.
DOI
|
19 |
XIE Siqi , ZHU Hongxin , ZHANG Xing , et al. A brief review on the recent development of phonon engineering and manipulation at nanoscales[J]. International Journal of Extreme Manufacturing, 2024, 6 (1): 012007.
DOI
|
20 |
LI Nianbei , REN Jie , WANG Lei , et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond[J]. Reviews of Modern Physics, 2012, 84 (3): 1045- 1066.
DOI
|
21 |
ZIMAN J M . Electrons and phonons: The theory of transport phenomena in solids[M]. New York: Oxford University Press, 1960.
|
22 |
KITTEL C . Introduction to solid state physics[M]. Wiley: New York, 1996.
|
23 |
CHEN Gang . Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons[M]. New York: Oxford University Press, 2005.
|
24 |
SRIVASTAVA G P . The physics of phonons[M]. 2nd ed. Boca Raton: Crc Press, 2022.
|
25 |
PEIERLS R . Zur kinetischen Theorie der Wärmeleitung in Kristallen[J]. Annalen der Physik, 1929, 395 (8): 1055- 1101.
DOI
|
26 |
CALLAWAY J . Model for lattice thermal conductivity at low temperatures[J]. The Physical Review, 1959, 113 (4): 1046- 1051.
DOI
|
27 |
HOLLAND M G . Phonon scattering in semiconductors from thermal conductivity studies[J]. The Physical Review, 1964, 134 (2A): A471- A480.
DOI
|
28 |
HU Shiqian , CHEN Jie , YANG Nuo , et al. Thermal transport in graphene with defect and doping: Phonon modes analysis[J]. Carbon, 2017, 116, 139- 144.
DOI
|
29 |
FENG Tianli , RUAN Xiulin , YE Zhenqiang , et al. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration[J]. Physical Review B, 2015, 91 (22): 224301.
DOI
|
30 |
MAURER L N , AKSAMIJA Z , RAMAYYA E B , et al. Universal features of phonon transport in nanowires with correlated surface roughness[J]. Applied Physics Letters, 2015, 106 (13): 133108.
DOI
|
31 |
LIM J , HIPPALGAONKAR K , ANDREWS S C , et al. Quantifying surface roughness effects on phonon transport in silicon nanowires[J]. Nano Letters, 2012, 12 (5): 2475- 2482.
DOI
|
32 |
MARTIN P , AKSAMIJA Z , POP E , et al. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires[J]. Physical Review Letters, 2009, 102 (12): 125503.
DOI
|
33 |
HEPPLESTONE S P , SRIVASTAVA G P . Theory of interface scattering of phonons in superlattices[J]. Physical Review B, 2010, 82 (14): 144303.
DOI
|
34 |
MALDOVAN M . Phonon wave interference and thermal bandgap materials[J]. Nature Materials, 2015, 14 (7): 667- 674.
DOI
|
35 |
XIE Guofeng , DING Dingding , ZHANG Gang . Phonon coherence and its effect on thermal conductivity of nanostructures[J]. Advances in Physics: X, 2018, 3 (1): 1480417.
DOI
|
36 |
CHEN J , HE J , PAN D , et al. Emerging theory and phenomena in thermal conduction: A selective review[J]. Science China Physics, Mechanics & Astronomy, 2022, 65 (11): 117002.
|
37 |
NOMURA M , ANUFRIEV R , ZHANG Zhongwei , et al. Review of thermal transport in phononic crystals[J]. Materials Today Physics, 2022, 22, 100613.
DOI
|
38 |
LANDAU L . Theory of the superfluidity of helium Ⅱ[J]. The Physical Review, 1941, 60 (4): 356- 358.
DOI
|
39 |
YU Cuiqian , OUYANG Yulon , CHEN Jie . A perspective on the hydrodynamic phonon transport in two-dimensional materials[J]. Journal of Applied Physics, 2021, 130 (1): 010902.
DOI
|
40 |
YU Cuiqian , SHAN Shuyue , LU Shuang , et al. Characteristics of distinct thermal transport behaviors in single-layer and multilayer graphene[J]. Physical Review B, 2023, 107 (16): 165424.
DOI
|
41 |
LU S , ZHANG Z , LI Y , et al. Phononic metagrating for lattice wave manipulation[J]. Physical Review B, 2024, 109 (7): 075404.
DOI
|
42 |
JIANG Jianhui , LU Shuang , OUYANG Yulou , et al. How hydrodynamic phonon transport determines the convergence of thermal conductivity in two-dimensional materials[J]. Nanomaterials(Basel, Switzerland), 2022, 12 (16): 2854.
|
43 |
GUO Yangyu , ZHANG Zhongwei , BESCOND M , et al. Size effect on phonon hydrodynamics in graphite microstructures and nanostructures[J]. Physical Review B, 2021, 104 (7): 075450.
DOI
|
44 |
HOGLUND E R , BAO Deliang , O'HARA A , et al. Direct visualization of localized vibrations at complex grain boundaries[J]. Advanced Materials, 2023, 35 (13): 2208920.
DOI
|
45 |
JIANG Xue , SHI Chengzhi , LI Zhenglu , et al. Direct observation of Klein tunneling in phononic crystals[J]. Science, 2020, 370 (6523): 1447- 1450.
DOI
|
46 |
LEGRAND R , HUYNH A , JUSSERAND B , et al. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs[J]. Physical Review B, 2016, 93 (18): 184304.
DOI
|
47 |
RAWAT V , KOH Y K , CAHILL D G , et al. Thermal conductivity of (Zr, W)N/ScN metal/semiconductor multilayers and superlattices[J]. Journal of Applied Physics, 2009, 105 (2): 024909.
DOI
|
48 |
LUCKYANOVA M N , GARG J , ESFARJANI K , et al. Coherent phonon heat conduction in superlattices[J]. Science, 2012, 338 (6109): 936- 939.
DOI
|
49 |
CHEN Peixuan , KATCHO N A , FESER J P , et al. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices[J]. Physical Review Letters, 2013, 111 (11): 115901.
DOI
|
50 |
RAVICHANDRAN J , YADAV A K , CHEAITO R , et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices[J]. Nature Materials, 2014, 13 (2): 168- 172.
DOI
|
51 |
HOŁUJ P , EULER C , BALKE B , et al. Reduced thermal conductivity of TiNiSn/HfNiSn superlattices[J]. Physical Review B, 2015, 92 (12): 125436.
DOI
|
52 |
SAHA B , KOH Y R , COMPARAN J , et al. Cross-plane thermal conductivity of(Ti, W)N/(Al, Sc)N metal/semiconductor superlattices[J]. Physical Review B, 2016, 93 (4): 045311.
DOI
|
53 |
SAHA B , KOH Y R , FESER J P , et al. Phonon wave effects in the thermal transport of epitaxial Tin/(Al, Sc)N metal/semiconductor superlattices[J]. Journal of Applied Physics, 2017, 121 (1): 015109.
DOI
|
54 |
CHEAITO R , POLANCO C A , ADDAMANE S , et al. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport[J]. Physical Review B, 2018, 97 (8): 085306.
DOI
|
55 |
BUGALLO D , LANGENBERG E , CARBÓ-ARGIBAY E , et al. Tuning coherent-phonon heat transport in LaCoO3/SrTiO3 superlattices[J]. The Journal of Physical Chemistry Letters, 2021, 12 (49): 11878- 11885.
DOI
|
56 |
MEYER D, METTERNICH D, HENNING P, et al. Coherent phonon transport and minimum of thermal conductivity in LaMnO 3/SrMnO 3 superlattices[DB/OL]. arXiv, 2021(2021-08-12). https://arxiv.org/abs/2108.05860.
|
57 |
CHO Haijun, WU Yuzhuang, KWON Y, et al. Anisotropic heat conduction of coherently transported phonons in InGaO3(ZnO)m single crystal films with superlattice structures[DB/OL]. arXiv, 2021(2021-08-11). https://arxiv.org/abs/2108.04970.
|
58 |
VENKATASUBRAMANIAN R . Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Physical Review B, 2000, 61 (4): 3091- 3097.
DOI
|
59 |
MALDOVAN M , THOMAS E L . Simultaneous localization of photons and phonons in two-dimensional periodic structures[J]. Applied Physics Letters, 2006, 88 (25): 251907.
DOI
|
60 |
MENDOZA J , CHEN Gang . Anderson localization of thermal phonons leads to a thermal conductivity maximum[J]. Nano Letters, 2016, 16 (12): 7616- 7620.
DOI
|
61 |
HU Shiqian , ZHANG Zhongwei , JIANG Pengfei , et al. Randomness-induced phonon localization in graphene heat conduction[J]. The Journal of Physical Chemistry Letters, 2018, 9 (14): 3959- 3968.
DOI
|
62 |
LUCKYANOVA M N , MENDOZA J , LU H , et al. Phonon localization in heat conduction[J]. Science Advances, 2018, 4 (12): eaat9460.
DOI
|
63 |
JUNTUNEN T , VÄNSKÄ O , TITTONEN I . Anderson localization quenches thermal transport in aperiodic superlattices[J]. Physical Review Letters, 2019, 122 (10): 105901.
DOI
|
64 |
YOSHIHIRO T , NISHIGUCHI N . Mode-conversion effects of phonons on Anderson localization[J]. Physical Review B, 2019, 100 (23): 235441.
DOI
|
65 |
HU Renjiu , TIAN Zhiting . Direct observation of phonon Anderson localization in Si/Ge aperiodic superlattices[J]. Physical Review B, 2021, 103 (4): 045304.
DOI
|
66 |
NI Yuxiang , VOLZ S . Evidence of phonon Anderson localization on the thermal properties of disordered atomic systems[J]. Journal of Applied Physics, 2021, 130 (19): 190901.
DOI
|
67 |
HU Shiqiang , ZHANG Zhongwei , JIANG Pengfei , et al. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures[J]. Nanoscale, 2019, 11 (24): 11839- 11846.
DOI
|
68 |
YANG Nuo , ZHANG Gang , LI Baowen . Ultralow thermal conductivity of isotope-doped silicon nanowires[J]. Nano Letters, 2008, 8 (1): 276- 280.
DOI
|
69 |
YANG Lina , YANG Nuo , LI Baowen . Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores[J]. Nano Letters, 2014, 14 (4): 1734- 1738.
DOI
|
70 |
HU Shiqian , FENG Leng , SHAO Cheng , et al. Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles[J]. Physical Review B, 2020, 102 (2): 024301.
DOI
|
71 |
HAN Haoxue , FENG Lei , XIONG Shiyun , et al. Effects of phonon interference through long range interatomic bonds on thermal interface conductance[J]. Low Temperature Physics, 2016, 42 (8): 711- 716.
DOI
|
72 |
HAN H , POTYOMINA L G , DARINSKⅡ A A , et al. Phonon interference and thermal conductance reduction in atomic-scale metamaterials[J]. Physical Review B, 2014, 89 (18): 180301.
DOI
|
73 |
JIANG Pengfei , OUYANG Yulou , REN Weijun , et al. Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures[J]. APL Materials, 2021, 9 (4): 040703.
DOI
|
74 |
YU J K , MITROVIC S , THAM D , et al. Reduction of thermal conductivity in phononic nanomesh structures[J]. Nature Nanotechnology, 2010, 5 (10): 718- 721.
DOI
|
75 |
HOPKINS P E , REINKE C M , SU M F , et al. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning[J]. Nano Letters, 2011, 11 (1): 107- 112.
DOI
|
76 |
JAIN A , YU Yingju , MCGAUGHEY A J H . Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm[J]. Physical Review B, 2013, 87 (19): 195301.
DOI
|
77 |
YANG Nuo , XU Xiangfan , ZHANG Gang , et al. Thermal transport in nanostructures[J]. AIP Advances, 2012, 2 (4): 041410.
DOI
|
78 |
GU Xiaokun , YANG Ronggui . Phonon transport and thermal conductivity in two-dimensional materials[J]. Annual Reviews heat transfer, 2016, 19 (1): 1- 65.
DOI
|
79 |
CAPINSKI W S , MARIS H J . Thermal conductivity of GaAs/AlAs superlattices[J]. Physica B: Condensed Matter, 1996, 219-220, 699- 701.
DOI
|
80 |
LEE S M , CAHILL D G , VENKATASUBRAMANIAN R . Thermal conductivity of Si-Ge superlattices[J]. Applied Physics Letters, 1997, 70 (22): 2957- 2959.
DOI
|
81 |
CAPINSKI W S , MARIS H J , RUF T , et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique[J]. Physical Review B, 1999, 59 (12): 8105- 8113.
DOI
|
82 |
BORCA-TASCIUC T , LIU Weili , LIU Jianlin , et al. Thermal conductivity of symmetrically strained Si/Ge superlattices[J]. Superlattices and Microstructures, 2000, 28 (3): 199- 206.
DOI
|
83 |
BORCA-TASCIUC D A , LIU Weili , CHEN H W , et al. Thermal conductivity of InAs/AlSb superlattices[J]. Microscale Thermophysical Engineering, 2001, 5 (3): 225- 231.
DOI
|
84 |
LIU W L , BORCA-TASCIUC T , CHEN G , et al. Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices[J]. Journal of Nanoscience and Nanotechnology, 2001, 1 (1): 39- 42.
DOI
|
85 |
KOH Y K , CAO Yu , CAHILL D G , et al. Heat-transport mechanisms in superlattices[J]. Advanced Functional Materials, 2009, 19 (4): 610- 615.
DOI
|
86 |
ANUFRIEV R , NOMURA M . Thermal conductance boost in phononic crystal nanostructures[J]. Physical Review B, 2015, 91 (24): 245417.
DOI
|
87 |
MALDOVAN M . Narrow low-frequency spectrum and heat management by thermocrystals[J]. Physical Review Letters, 2013, 110 (2): 025902.
DOI
|
88 |
MA Dengke , WAN Xiao , YANG Nuo . Unexpected thermal conductivity enhancement in pillared graphene nanoribbon with isotopic resonance[J]. Physical Review B, 2018, 98 (24): 245420.
DOI
|
89 |
DAVIS B L , HUSSEIN M I . Nanophononic metamaterial: Thermal conductivity reduction by local resonance[J]. Physical Review Letters, 2014, 112 (5): 055505.
DOI
|
90 |
HONARVAR H , HUSSEIN M I . Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations[J]. Physical Review B, 2016, 93 (8): 081412.
DOI
|
91 |
XIONG Shiyun , SÄÄSKILAHTI K , KOSEVICH Y A , et al. Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity[J]. Physical Review Letters, 2016, 117 (2): 025503.
DOI
|
92 |
MA D , ARORA A , DENG S , et al. Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction[J]. Materials Today Physics, 2019, 8, 56- 61.
DOI
|
93 |
TAMURA S , HURLEY D C , WOLFE J P . Acoustic-phonon propagation in superlattices[J]. Physical Review. B Condensed Matter, 1988, 38 (2): 1427- 1449.
DOI
|
94 |
CHEN G . Phonon wave heat conduction in thin films and superlattices[J]. ASME Journal of Heat Transfer, 1999, 121 (4): 945- 953.
DOI
|
95 |
TAMURA S I , TANAKA Y , MARIS H J . Phonon group velocity and thermal conduction in superlattices[J]. Physical Review B, 1999, 60 (4): 2627- 2630.
DOI
|
96 |
VOLZ S , SHIOMI J , NOMURA M , et al. Heat conduction in nanostructured materials[J]. Journal of Thermal Science and Technology, 2016, 11 (1): JTST0001- JTST0001.
DOI
|
97 |
BAO Hua , CHEN Jie , GU Xiaokun , et al. A review of simulation methods in micro/nanoscale heat conduction[J]. ES Energy & Environment, 2018, 1, 16- 55.
DOI
|
98 |
YANG Ronggui , CHEN Gang , DRESSELHAUS M S . Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction[J]. Physical Review B, 2005, 72 (12): 125418.
DOI
|
99 |
HSIEH T Y , LIN H , HSIEH T J , et al. Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores[J]. Journal of Applied Physics, 2012, 111 (12): 124329.
DOI
|
100 |
TANG G H , BI C , FU B . Thermal conduction in nano-porous silicon thin film[J]. Journal of Applied Physics, 2013, 114 (18): 184302.
DOI
|
101 |
RAN Xin , WANG Moran . Efficiency improvement of discrete-ordinates method for interfacial phonon transport by gauss-legendre integral for frequency domain[J]. Journal of Computational Physics, 2019, 399, 108920.
DOI
|
102 |
GUO Yangyu , ZHANG Zhongwei , Nomura M , et al. Phonon vortex dynamics in graphene ribbon by solving Boltzmann transport equation with ab initio scattering rates[J]. International Journal of Heat and Mass Transfer, 2021, 169, 120981.
DOI
|
103 |
GUO Y , WANG M . Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model[J]. Physical Review B, 2017, 96 (13): 134312.
DOI
|
104 |
WOLF S , NEOPHYTOU N , KOSINA H . Thermal conductivity of silicon nanomeshes: Effects of porosity and roughness[J]. Journal of Applied Physics, 2014, 115 (20): 204306.
DOI
|
105 |
RAVICHANDRAN N K , MINNICH A J . Coherent and incoherent thermal transport in nanomeshes[J]. Physical Review B, 2014, 89 (20): 205432.
DOI
|
106 |
JEAN V , FUMERON S , TERMENTZIDIS K , et al. Monte Carlo simulations of phonon transport in nanoporous silicon and germanium[J]. Journal of Applied Physics, 2014, 115 (2): 024304.
DOI
|
107 |
KAVIANY M. Introduction to heat transfer physics[R]. University of Michigan, 2024.
|
108 |
RAN Xin , GUO Yangyu , HU Zhiyu , et al. Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity[J]. Frontiers in Energy Research, 2018, 6, 1- 9.
DOI
|
109 |
RAN Xin , GUO Yangyu , WANG Moran . Interfacial phonon transport with frequency-dependent transmissivity by Monte Carlo simulation[J]. International Journal of Heat and Mass Transfer, 2018, 123, 616- 628.
DOI
|
110 |
RAN Xin , WANG Moran . Manipulation of effective thermal conductivity of multilayer thin film by varying thickness ratio of layers using Monte Carlo simulation[J]. Physics Letters A, 2019, 383 (1): 58- 62.
DOI
|
111 |
RAN Xin , WANG Moran . Abnormal thermal boundary resistance of thin films with heat source[J]. International Journal of Heat and Mass Transfer, 2020, 147, 118941.
DOI
|
112 |
RAN Xin , WANG Moran . In-plane interfacial phonon transport through multi-layer thin films by theoretical analyses and Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2021, 176, 121438.
DOI
|
113 |
RAN Xin , WANG Moran . A steady-state energy-based Monte Carlo method for phonon transport with arbitrary temperature difference[J]. Journal of Heat Transfer, 2022, 144 (8): 082502.
DOI
|
114 |
MIAO Wuli , WANG Moran . Importance of electron-phonon coupling in thermal transport in metal/semiconductor multilayer films[J]. Int J Heat Mass Transf, 2023, 200, 123538.
DOI
|
115 |
MIAO Wuli , WANG Moran . Nonequilibrium effects on the electron-phonon coupling constant in metals[J]. Phys Rev B, 2021, 103 (12): 125412.
DOI
|
116 |
MIAO Wuli , WANG Moran . Reexamination of electron-phonon coupling constant in continuum model by comparison with Boltzmann transport theory[J]. Int J Heat Mass Transf, 2021, 174, 121309.
DOI
|
117 |
MIAO Wuli , GUO Yangyu , RAN Xin , et al. Deviational Monte Carlo scheme for thermal and electrical transport in metal nanostructures[J]. Phys Rev B, 2019, 99 (20): 205433.
DOI
|
118 |
CHEN G . Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures[J]. Journal of Heat Transfer, 1997, 119 (2): 220- 229.
DOI
|
119 |
CHEN G . Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices[J]. Physical Review B, 1998, 57 (23): 14958.
DOI
|
120 |
SIMKIN M V , MAHAN G D . Minimum thermal conductivity of superlattices[J]. Physical Review Letters, 2000, 84 (5): 927- 930.
DOI
|
121 |
GARG J , CHEN Gang . Minimum thermal conductivity in superlattices: A first-principles formalism[J]. Physical Review B, 2013, 87 (14): 140302.
DOI
|
122 |
OUYANG Tao , CHEN Yuanping , YANG K K , et al. Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge[J]. Europhysics Letters, 2009, 88 (2): 28002.
DOI
|
123 |
JIANG Jinwu , WANG Jiansheng , WANG Bingshen . Minimum thermal conductance in graphene and boron nitride superlattice[J]. Applied Physics Letters, 2011, 99 (4): 043109.
DOI
|
124 |
WU Xin , HAN Qiang . Transition from incoherent to coherent phonon thermal transport across graphene/h-BN van der Waals superlattices[J]. International Journal of Heat and Mass Transfer, 2022, 184, 122390.
DOI
|
125 |
ZHANG Gang . Nanoscale energy transport and harvesting: A computational study[M]. New York: Jenny Stanford Publishing, 2015.
|
126 |
ZHANG Zhuomin . Nano/microscale heat transfer[M]. Cham: Springer International Publishing, 2020.
|
127 |
DECHAUMPHAI E , CHEN Renkun . Thermal transport in phononic crystals: The role of zone folding effect[J]. Journal of Applied Physics, 2012, 111 (7): 073508.
DOI
|
128 |
MALDOVAN M . Sound and heat revolutions in phononics[J]. Nature, 2013, 503 (7475): 209- 217.
DOI
|
129 |
VASILEIADIS T , VARGHESE J , BABACIC V , et al. Progress and perspectives on phononic crystals[J]. Journal of Applied Physics, 2021, 129 (16): 160901.
DOI
|
130 |
BORN M , WOLF E . Principles of optics: 60th anniversary edition[M]. 7rd ed Cambridge: Cambridge University Press, 2019.
|
131 |
LI Chunmin , ZHANG Shengyuan , CHEN Haibo , et al. On the generalized snell's law for the design of elastic metasurfaces[J]. Journal of Applied Physics, 2023, 133 (9): 095104.
DOI
|
132 |
NIE B D , CAO Bingyang . Reflection and refraction of a thermal wave at an ideal interface[J]. International Journal of Heat and Mass Transfer, 2018, 116, 314- 328.
DOI
|
133 |
SHAO Cheng , RONG Qingyuan , LI Nianbei , et al. Understanding the mechanism of diffuse phonon scattering at disordered surfaces by atomistic wave-packet investigation[J]. Physical Review B, 2018, 98 (15): 155418.
DOI
|
134 |
JI Linxin , HUANG Aaqi , HUO Yiqi , et al. Influence of four-phonon scattering and wavelike phonon tunneling effects on the thermal transport properties of TlBiSe2[J]. Physical Review B, 2024, 109 (21): 214307.
DOI
|
135 |
DING Ding , YIN Xiaobo , LI Baowen . Sensing coherent phonons with two-photon interference[J]. New Journal of Physics, 2018, 20 (2): 023008.
DOI
|
136 |
ZHANG Xiao , ZHAO Lidong . Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1 (2): 92- 105.
DOI
|
137 |
ZHU Zhenyu , TIWARI J , FENG Tianli , et al. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS[J]. Nano Research, 2022, 15 (5): 4739- 4746.
DOI
|
138 |
WHITEWAY E , LEE M , HILKE M . Graphene isotope superlattices with strongly diminished thermal conductivity for thermoelectric applications[J]. ACS Applied Nano Materials, 2020, 3 (9): 9167- 9173.
DOI
|
139 |
CHEN Renkun , LEE J , LEE W , et al. Thermoelectrics of nanowires[J]. Chemical Reviews, 2019, 119 (15): 9260- 9302.
DOI
|
140 |
O'DWYER C , CHEN Renkun , HE J H , et al. Scientific and technical challenges in thermal transport and thermoelectric materials and devices[J]. ECS Journal of Solid State Science, 2017, 6 (3): N3058.
|
141 |
OUYANG Yulou , ZHANG Zhongwei , LI Dengfeng , et al. Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance[J]. Annalen der Physik, 2019, 531 (4): 1800437.
DOI
|
142 |
MUSLAND L , FLAGE L E . Thermoelectric effect in superlattices; applicability of coherent and incoherent transport models[J]. Computational Materials Science, 2018, 153, 88- 96.
DOI
|
143 |
KHELIF A , ADIBI A . Phononic crystals: Fundamentals and applications[M]. New York: Springer, 2016.
|
144 |
WEI Han , HU Yue , BAO Hua , et al. Quantifying the diverse wave effects in thermal transport of nanoporous graphene[J]. Carbon, 2022, 197, 18- 26.
DOI
|
145 |
YANG Lina , CHEN Jie , YANG Nuo , et al. Significant reduction of graphene thermal conductivity by phononic crystal structure[J]. International Journal of Heat and Mass Transfer, 2015, 91, 428- 432.
DOI
|
146 |
NOMURA M , SHIOMI J , SHIGA T , et al. Thermal phonon engineering by tailored nanostructures[J]. Japanese Journal of Applied Physics, 2018, 57 (8): 080101.
DOI
|
147 |
CHEN G , NEAGU M , BORCA-TASCIUC T . Thermal conductivity and heat transfer in superlattices[J]. Applied Physics Letters, 1997, 478 (1): 85- 90.
|
148 |
HYLDGAARD P , MAHAN G D . Phonon superlattice transport[J]. Physical Review B, 1997, 56 (17): 10754- 10757.
DOI
|
149 |
NARAYANAMURTI V , STÖRMER H L , CHIN M A , et al. Selective transmission of high-frequency phonons by a superlattice: The "dielectric" phonon filter[J]. Physical Review Letters, 1979, 43 (27): 2012- 2016.
DOI
|
150 |
MIZUNO S , TAMURA S . Theory of acoustic-phonon transmission in finite-size superlattice systems[J]. Physical Review B, 1992, 45 (2): 734- 741.
DOI
|
151 |
KATO H , MARIS H J , TAMURA S . Resonant-mode conversion and transmission of phonons in superlattices[J]. Physical Review B, 1996, 53 (12): 7884- 7889.
DOI
|
152 |
TAMURA S I , WATANABE H , KAWASAKI T . Acoustic-phonon cavity modes in one-dimensional multilayered elastic structures[J]. Physical Review B, 2005, 72 (16): 165306.
DOI
|
153 |
YANG Bao , CHEN Gang . Lattice dynamics study of anisotropic heat conduction in superlattices[J]. Microscale Thermophysical Engineering, 2000, 626 (1): 83.
|
154 |
KISELEV A A , KIM K W , STROSCIO M A . Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell[J]. Physical Review B, 2000, 62 (11): 6896- 6899.
DOI
|
155 |
BIES W E , RADTKE R J , EHRENREICH H . Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices[J]. Journal of Applied Physics, 2000, 88 (3): 1498- 1503.
DOI
|
156 |
NAYFEH A H . Wave propagation in layered anisotropic media: With application to composites[M]. New York: Elsevier Science, 1995.
|
157 |
RAN Xin , HUANG Yunfan , WANG Moran . A hybrid Monte Carlo-discrete ordinates method for phonon transport in micro/nanosystems with rough interfaces[J]. International Journal of Heat and Mass Transfer, 2023, 201 (Part 2): 123624.
|
158 |
LIU B , KHVESYUK V I , BARINOV A A , et al. Effect of interfacial roughness on thermal boundary conductance: An elastic wave model using the Kirchhoff approximation[J]. International Journal of Mechanical Sciences, 2022, 218, 106993.
DOI
|
159 |
WANG Jingwei , ZHANG Zhongwei , SHI Run , et al. Impact of nanoscale roughness on heat transport across the solid-solid interface[J]. Advanced Materials Interfaces, 2020, 7 (4): 1901582.
DOI
|
160 |
ZHANG Yingying , MA Dengke , ZANG Yi , et al. A modified theoretical model to accurately account for interfacial roughness in predicting the interfacial thermal conductance[J]. Frontiers in Energy Research, 2018, 6, 48.
DOI
|
161 |
JIA Lin , JU Shenghong , LIANG Xingang , et al. Tuning phonon transmission and thermal conductance by roughness at rectangular and triangular Si/Ge interface[J]. Materials Research Express, 2016, 3 (9): 095024.
DOI
|
162 |
SHAO Cheng , BAO Hua . A molecular dynamics investigation of heat transfer across a disordered thin film[J]. International Journal of Heat and Mass Transfer, 2015, 85, 33- 40.
DOI
|
163 |
HASLINGER S G , LOWE M J S , HUTHWAITE P , et al. Appraising kirchhoff approximation theory for the scattering of elastic shear waves by randomly rough defects[J]. Journal of Sound and Vibration, 2019, 460, 114872.
DOI
|
164 |
SCOTT E A , HATTAR K , ROST C M , et al. Phonon scattering effects from point and extended defects on thermal conductivity studied via ion irradiation of crystals with self-impurities[J]. Physical Review Materials, 2018, 2 (9): 095001.
DOI
|
165 |
YU Zhizhou , XIONG Guohuan , ZHANG Lifa . A brief review of thermal transport in mesoscopic systems from nonequilibrium Green's function approach[J]. Frontiers of Physics, 2021, 16 (4): 43201.
DOI
|
166 |
ZENG Yujia , DING Zhongke , PAN Hui , et al. Nonequilibrium green's function method for phonon heat transport in quantum system[J]. Journal of Physics. Condensed Matter: An Institute of Physics Journal, 2022, 34 (22): 223001.
|
167 |
CAROLI C , COMBESCOT R , NOZIERES P , et al. Direct calculation of the tunneling current[J]. Journal of Physics C: Solid State Physics, 1971, 4 (8): 916.
DOI
|
168 |
MEIR Y , WINGREEN N S . Landauer formula for the current through an interacting electron region[J]. Physical Review Letters, 1992, 68 (16): 2512- 2515.
DOI
|
169 |
WANG Jiansheng , WANG Jian , ZENG Nan . Nonequilibrium green's function approach to mesoscopic thermal transport[J]. Physical Review B, 2006, 74 (3): 033408.
|
170 |
WANG Jiansheng , ZENG Nan , WANG Jian , et al. Nonequilibrium green's function method for thermal transport in junctions[J]. Physical Review E, Statistical, Nonlinear, and soft Matter Physics, 2007, 75 (6 Pt1): 061128.
|
171 |
TAYLOR J , GUO Hong , WANG Jianwang . Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B, 2001, 63 (24): 245407.
DOI
|
172 |
BRANDBYGE M , MOZOS J L , ORDEJÓN P , et al. Density-functional method for nonequilibrium electron transport[J]. Physical Review B, 2002, 65 (16): 165401.
DOI
|
173 |
TIAN Zhiting , ESFARJANI K , CHEN Gang . Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method[J]. Physical Review B, 2012, 86 (23): 235304.
DOI
|
174 |
TIAN Zhiting , ESFARJANI K , CHEN Gang . Green's function studies of phonon transport across Si/Ge superlattices[J]. Physical Review B, 2014, 89 (23): 235307.
DOI
|
175 |
MINGO N . Anharmonic phonon flow through molecular-sized junctions[J]. Physical Review B, 2006, 74 (12): 125402.
DOI
|
176 |
FANG Junxin , QIAN Xin , ZHAO C Y , et al. Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains[J]. Physical Review E, 2020, 101 (2/1): 022133.
|
177 |
GUO Yangyu , BESCOND M , ZHANG Zhongwei , et al. Quantum mechanical modeling of anharmonic phonon-phonon scattering in nanostructures[J]. Physical Review B, 2020, 102 (19): 195412.
DOI
|
178 |
LUISIER M . Atomistic modeling of anharmonic phonon-phonon scattering in nanowires[J]. Physical Review B, 2012, 86 (24): 245407.
DOI
|
179 |
DAI Jinghang , TIAN Zhiting . Rigorous formalism of anharmonic atomistic Green's function for three-dimensional interfaces[J]. Physical Review B, 2020, 101 (4): 041301.
DOI
|
180 |
MIROSHNICHENKO A E , FLACH S , KIVSHAR Y S . Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 2010, 82 (3): 2257- 2298.
DOI
|
181 |
CAO Xuanhao , WU Dan , FENG Yexin , et al. Effect of electrophilic substitution and destructive quantum interference on the thermoelectric performance in molecular devices[J]. Journal of Physics. Condensed Matter: An Institute of Physics Journal, 2019, 31 (34): 345303.
|
182 |
KLÖCKNER J C , CUEVAS J C , PAULY F . Transmission eigenchannels for coherent phonon transport[J]. Physical Review B, 2018, 97 (15): 155432.
DOI
|
183 |
GU Xiaokun , FAN Z , BAO Hua . Thermal conductivity prediction by atomistic simulation methods: Recent advances and detailed comparison[J]. Journal of Applied Physics, 2021, 130 (21): 210902.
DOI
|
184 |
CHAKRABORTY S , KLEINT C A , HEINRICH A , et al. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111)[J]. Applied Physics Letters, 2003, 83 (20): 4184- 4186.
DOI
|
185 |
ZHAN H , ZHANG G , ZHANG Y , et al. Thermal conductivity of a new carbon nanotube analog: The diamond nanothread[J]. Carbon, 2016, 98, 232- 237.
DOI
|
186 |
GU Xiao , WEI Yujie , YIN Xiaobo , et al. Colloquium: Phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90 (4): 041002.
DOI
|
187 |
ZHANG Zhongwei , CHEN Jie . Thermal conductivity of nanowires*[J]. Chinese Physics B, 2018, 27 (3): 035101.
DOI
|
188 |
LIU Bin , GUO Yangyu , KHVESYUK V I , et al. Heat conduction of multilayer nanostructures with consideration of coherent and incoherent phonon transport[J]. Nano Research, 2022, 15 (10): 9492- 9497.
DOI
|
189 |
魏培君. 弹性波理论[M]. 北京: 科学出版社, 2021.
|
190 |
BREKHOVSKIKH L M , GODIN O A . Acoustics of layered media Ⅱ: Point sources and bounded beams[M]. Berlin, Heidelberg: Springer, 1999.
|
191 |
GENG Zhuoran , MAASILTA I J . Acoustic wave tunneling across a vacuum gap between two piezoelectric crystals with arbitrary symmetry and orientation[J]. Physical Review Research, 2022, 4 (3): 033073.
DOI
|
192 |
GENG Zhuoran , MAASILTA I J . Complete tunneling of acoustic waves between piezoelectric crystals[J]. Communications Physics, 2023, 6 (1): 178.
DOI
|
193 |
GUO Yangyu , GóMEZ V M , MESSINA R , et al. Atomistic modeling of extreme near-field heat transport across nanogaps between two polar dielectric materials[J]. Physical Review B, 2023, 108 (8): 085434.
DOI
|
194 |
GUO Yangyu , ADESSI C , COBIAN M , et al. Atomistic simulation of phonon heat transport across metallic vacuum nanogaps[J]. Physical Review B, 2022, 106 (8): 085403.
DOI
|
195 |
ALLEN P B , FELDMAN J L . Thermal conductivity of glasses: Theory and application to amorphous Si[J]. Physical Review Letters, 1989, 62 (6): 645- 648.
DOI
|
196 |
ISAEVA L , BARBALINARDO G , DONADIO D , et al. Modeling heat transport in crystals and glasses from a unified latticedynamical approach[J]. Nature Communications, 2019, 10 (1): 3853.
DOI
|
197 |
SIMONCELLI M , MARZARI N , MAURI F . Unified theory of thermal transport in crystals and glasses[J]. Nature Physics, 2019, 15 (8): 809- 813.
DOI
|
198 |
SIMONCELLI M , MARZARI N , MAURI F . Wigner formulation of thermal transport in solids[J]. Physical Review X, 2022, 12 (4): 041011.
DOI
|
199 |
ZHANG Zhongwei , GUO Yangyu , BESCOND M , et al. Heat conduction theory including phonon coherence[J]. Physical Review Letters, 2022, 128 (1): 015901.
DOI
|
200 |
ZHANG Zhongwei , GUO Yangyu , BESCOND M , et al. How coherence is governing diffuson heat transfer in amorphous solids[J]. npj Computational Materials, 2022, 8 (1): 96.
DOI
|
201 |
SUN Lin , MURTHY J Y . Molecular dynamics simulation of phonon scattering at Silicon/Germanium interfaces[J]. Journal of Heat Transfer, 2010, 132 (10): 102403.
DOI
|
202 |
HOPKINS P E , DUDA J C , CLARK S P , et al. Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces[J]. Applied Physics Letters, 2011, 98 (16): 161913.
DOI
|
203 |
HOPKINS P E , DUDA J C , PETZ C W , et al. Controlling thermal conductance through quantum dot roughening at interfaces[J]. Physical Review B, 2011, 84 (3): 035438.
DOI
|
204 |
DUDA J C , HOPKINS P E . Systematically controlling Kapitza conductance via chemical etching[J]. Applied Physics Letters, 2012, 100 (11): 111602.
DOI
|
205 |
DUDA J , YANG C Y , FOLEY B , et al. Influence of interfacial properties on thermal transport at gold: Silicon contacts[J]. Applied Physics Letters, 2013, 102 (8): 081902.
DOI
|
206 |
ANDERSON P W . Absence of diffusion in certain random lattices[J]. The Physical Review, 1958, 109 (5): 1492- 1505.
DOI
|
207 |
ROY CHOWDHURY P , REYNOLDS C , GARRETT A , et al. Machine learning maximized Anderson localization of phonons in aperiodic superlattices[J]. Nano Energy, 2020, 69, 104428.
DOI
|
208 |
CHEN Yunfei , LI Deyu , LUKES J R , et al. Minimum superlattice thermal conductivity from molecular dynamics[J]. Physical Review B, 2005, 72 (17): 174302.
DOI
|
209 |
CHALOPIN Y , ESFARJANI K , HENRY A , et al. Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics[J]. Physical Review B, 2012, 85 (19): 195302.
DOI
|
210 |
HU Ming , POULIKAKOS D . Si/Ge superlattice nanowires with ultralow thermal conductivity[J]. Nano Letters, 2012, 12 (11): 5487- 5494.
DOI
|
211 |
MU X , ZHANG Teng , GO D B , et al. Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices[J]. Carbon, 2015, 83, 208- 216.
DOI
|
212 |
CHEN Xunkun , XIE Zhongxiang , ZHOU Wuxing , et al. Phonon wave interference in graphene and boron nitride superlattice[J]. Applied Physics Letters, 2016, 109 (2): 023101.
DOI
|
213 |
YANG B , CHEN G . Partially coherent phonon heat conduction in superlattices[J]. Physical Review B, 2003, 67 (19): 195311.
DOI
|
214 |
YE E , MINNICH A J . Ab initio based investigation of thermal transport in superlattices using the Boltzmann equation: Assessing the role of phonon coherence[J]. Journal of Applied Physics, 2019, 125 (5): 055107.
DOI
|
215 |
DALY B C , MARIS H J , IMAMURA K , et al. Molecular dynamics calculation of the thermal conductivity of superlattices[J]. Phys Rev B, 2002, 66 (2): 024301.
DOI
|
216 |
IMAMURA K , TANAKA Y , NISHIGUCHI N , et al. Lattice thermal conductivity in superlattices: molecular dynamics calculations with a heat reservoir method[J]. J Phys Condens Matter, 2003, 15 (50): 8679.
DOI
|
217 |
CHEN J , ZHANG G , LI B . Tunable thermal conductivity of Si1-xGex nanowires[J]. Appl Phys Lett, 2009, 95 (7): 073117.
DOI
|
218 |
TERMENTZIDIS K , MERABIA S , CHANTRENNE P , et al. Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics[J]. Int J Heat Mass Transf, 2011, 54 (9): 2014- 2020.
|
219 |
TERMENTZIDIS K , CHANTRENNE P , KEBLINSKI P . Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces[J]. Phys Rev B, 2009, 79 (21): 214307.
DOI
|
220 |
JI P , ZHANG Y , YANG M . Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study[J]. J Appl Phys, 2013, 114 (23): 234905.
DOI
|
221 |
ROY CHOWDHURY P , SHI J , FENG T , et al. Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations[J]. ACS Appl Mater Interfaces, 2021, 13 (3): 4636- 4642.
DOI
|
222 |
ZHU T , ERTEKIN E . Phonon transport on two-dimensional graphene/boron nitride superlattices[J]. Phys Rev B, 2014, 90 (19): 195209.
DOI
|
223 |
DA SILVA C , SAIZ F , ROMERO D A , et al. Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride[J]. Phys Rev B, 2016, 93 (12): 125427.
DOI
|
224 |
FELIX I M , PEREIRA L F C . Thermal Conductivity of Graphene-hBN Superlattice Ribbons[J]. Scientific Reports, 2018, 8 (1): 2737.
DOI
|
225 |
SHIOMI J , MARUYAMA S . Heat conduction of single-walled carbon nanotube isotope superlattice structures: A molecular dynamics study[J]. Phys Rev B, 2006, 74 (15): 155401.
DOI
|
226 |
CHEN Y , LI D , YANG J , et al. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires[J]. Physica B: Condensed Matter, 2004, 349 (1): 270- 280.
|
227 |
WANG X , WANG M , HONG Y , et al. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice[J]. Physical Chemistry Chemical Physics, 2017, 19 (35): 24240- 24248.
DOI
|
228 |
LI Q , YE W . An interfering Monte Carlo method for partially coherent phonon transport in superlattices[J]. Int J Heat Mass Transf, 2017, 107, 534- 543.
DOI
|
229 |
LATOUR B , VOLZ S , CHALOPIN Y . Microscopic description of thermal-phonon coherence: From coherent transport to diffuse interface scattering in superlattices[J]. Phys Rev B, 2014, 90 (1): 014307.
DOI
|
230 |
WANG Y , HUANG H , RUAN X . Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers[J]. Phys Rev B, 2014, 90 (16): 165406.
DOI
|
231 |
VOLZ S , SAULNIER J B , CHEN G , et al. Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques[J]. Microelectron J, 2000, 31 (9): 815- 819.
|
232 |
XIE G , JU Z , ZHOU K , et al. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime[J]. npj Comput Mater, 2018, 4 (1): 21.
DOI
|
233 |
GUO Y , ZHANG Z , BESCOND M , et al. Anharmonic phonon-phonon scattering at the interface between two solids by nonequilibrium Green's function formalism[J]. Phys Rev B, 2021, 103 (17): 174306.
DOI
|
234 |
WOLF E . New theory of partial coherence in the space – frequency domain. Part I: spectra and cross spectra of steady-state sources[J]. J Opt Soc Am, 1982, 72 (3): 343- 351.
DOI
|
235 |
WOLF E . New theory of partial coherence in the space-frequency domain. Part Ⅱ: Steady-state fields and higher-order correlations[J]. Journal of the Optical Society of America A, 1986, 3 (1): 76- 85.
DOI
|
236 |
CARMINATI R , GREFFET J-J . Near-Field Effects in Spatial Coherence of Thermal Sources[J]. Phys Rev Lett, 1999, 82 (8): 1660- 1663.
DOI
|
237 |
TERVO J , SETÄLÄ T , FRIBERG A T . Theory of partially coherent electromagnetic fields in the space – frequency domain[J]. Journal of the Optical Society of America A, 2004, 21 (11): 2205- 2215.
DOI
|
238 |
SINGER A , VARTANYANTS I A , KUHLMANN M , et al. Transverse-Coherence Properties of the Free-Electron-Laser FLASH at DESY[J]. Phys Rev Lett, 2008, 101 (25): 254801.
DOI
|
239 |
SONJA F-A , GUILLAUME H , STEPHEN M B . Measures of coherence for trapped matter waves[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34 (5): 945.
DOI
|
240 |
STEPHEN M B , SONJA F-A , AIDAN S A , et al. Coherence length for a trapped Bose gas[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33 (19): 4177.
DOI
|
241 |
BEZETT A , TOTH E , BLAKIE P B . Two-point correlations of a trapped interacting Bose gas at finite temperature[J]. Phys Rev A, 2008, 77 (2): 023602.
DOI
|
242 |
MANDEL L, WOLF E. Optical Coherence and Quantum Optics, F, 1995[ C]. Cambridge University Press.
|
243 |
LIAO Y , SHIGA T , KASHIWAGI M , et al. Akhiezer mechanism limits coherent heat conduction in phononic crystals[J]. Phys Rev B, 2018, 98 (13): 134307.
DOI
|
244 |
WAGNER M R , GRACZYKOWSKI B , REPARAZ J S , et al. Two-Dimensional Phononic Crystals: Disorder Matters[J]. Nano Lett, 2016, 16 (9): 5661- 5668.
DOI
|
245 |
ZHANG Z , GUO Y , BESCOND M , et al. Generalized decay law for particlelike and wavelike thermal phonons[J]. Phys Rev B, 2021, 103 (18): 184307.
DOI
|