Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (2): 192-201.DOI: 10.19596/j.cnki.1001-246x.8882
• Research Reports • Previous Articles Next Articles
Quanyu PAN1,2(), Linsong CHENG1,2,*(
), Pin JIA1,2, Jiangpeng HU1,2, Zhihao JIA1,2
Received:
2023-12-25
Online:
2025-03-25
Published:
2025-04-08
Contact:
Linsong CHENG
Quanyu PAN, Linsong CHENG, Pin JIA, Jiangpeng HU, Zhihao JIA. Quantitative Evaluation Model of Water Blocking Damage of Fracturing Fluid in Tight Reservoirs and Analysis of Affecting Factors[J]. Chinese Journal of Computational Physics, 2025, 42(2): 192-201.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8882
Fig.1 Schematic of gas-water occurrence state (a) initial gas-water occurrence state; (b) process of hydraulic fracturing fluid injection (formation of water blocking damage); (c) process of hydraulic fracturing fluid flowback (partial relief of water blocking damage)
实验数据 | 岩样号 | 长度/cm | 直径/cm | 孔隙度/% | 渗透率/(10-3 μm2) | 排采压差/MPa |
Ref.[ | S1 | 6.06 | 2.52 | 5.94 | 0.069 6 | 1.5 |
S3 | 6.45 | 2.50 | 11.39 | 0.181 | 1.5 | |
Ref.[ | 4# | 5.08 | 2.54 | 5.05 | 0.061 | 1 |
Table 1 Basic parameters of rock samples
实验数据 | 岩样号 | 长度/cm | 直径/cm | 孔隙度/% | 渗透率/(10-3 μm2) | 排采压差/MPa |
Ref.[ | S1 | 6.06 | 2.52 | 5.94 | 0.069 6 | 1.5 |
S3 | 6.45 | 2.50 | 11.39 | 0.181 | 1.5 | |
Ref.[ | 4# | 5.08 | 2.54 | 5.05 | 0.061 | 1 |
Fig.3 Water saturation between experimental data and model solution results (a) validation results with experimental data[38]; (b) validation results with experimental data[39]
Fig.5 Effect of fracturing fluid invasion depth on water blocking damage (a) variation of water saturation and damage ratio of permeability over time; (b) variation of water saturation and damage ratio of permeability with invasion depth
Fig.6 Effect of flowback and production differential pressure on water blocking damage (a) variation of water saturation and damage ratio of permeability over time; (b) variation of water saturation and damage ratio of permeability with pressure differential during flowback
参数 | 数值 | 参数 | 数值 | |
基质渗透率/mD | 0.07 | 基质含水饱和度/% | 20 | |
侵入区渗透率/mD | 0.06 | 侵入区含水饱和度/% | 40 | |
裂缝区渗透率/mD | 700 | 裂缝区含水饱和度/% | 100 | |
压裂液黏度/(mPa·s) | 1 | 孔隙度/% | 6.07 | |
缝间距/m | 65 | 排采压差/MPa | 20 | |
裂缝数量/条 | 23 |
Table 2 Basic parameters of the model
参数 | 数值 | 参数 | 数值 | |
基质渗透率/mD | 0.07 | 基质含水饱和度/% | 20 | |
侵入区渗透率/mD | 0.06 | 侵入区含水饱和度/% | 40 | |
裂缝区渗透率/mD | 700 | 裂缝区含水饱和度/% | 100 | |
压裂液黏度/(mPa·s) | 1 | 孔隙度/% | 6.07 | |
缝间距/m | 65 | 排采压差/MPa | 20 | |
裂缝数量/条 | 23 |
Fig.8 Effect of differential pressure of flowback and production on water and gas production (a) effect on water production; (b) effect on gas production
1 |
贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343- 350.
|
2 |
杜旭林, 程林松, 牛烺昱, 等. 考虑水力压裂缝和天然裂缝动态闭合的三维离散缝网数值模拟[J]. 计算物理, 2022, 39(4): 453- 464.
DOI |
3 |
DOI |
4 |
DOI |
5 |
方思冬, 王卫红, 吴永辉, 等. 基于改进格林元的压裂水平井动态分析方法[J]. 计算物理, 2020, 37(1): 69- 78.
DOI |
6 |
曹冲, 程林松, 张向阳, 等. 基于多变量小样本的渗流代理模型及产量预测方法[J]. 力学学报, 2021, 53(8): 2345- 2354.
|
7 |
刘广峰, 王连鹤, 孙仲博, 等. 致密砂岩储层孔喉结构研究进展[J]. 石油科学通报, 2022, 7(3): 406- 419.
DOI |
8 |
DOI |
9 |
DOI |
10 |
|
11 |
盛军, 孙卫, 段宝虹, 等. 致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J]. 天然气地球科学, 2015, 26(10): 1972- 1978.
DOI |
12 |
聂法健, 田巍, 李中超, 等. 致密砂岩气藏水锁伤害及对产能的影响[J]. 科学技术与工程, 2016, 16(18): 30- 35.
DOI |
13 |
熊钰, 莫军, 李佩斯, 等. 致密储层干化主剂筛选评价与配方研制[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 165- 172.
|
14 |
范文永, 舒勇, 李礼, 等. 低渗透油气层水锁损害机理及低损害钻井液技术研究[J]. 钻井液与完井液, 2008, 25(4): 16- 19.
DOI |
15 |
耿娇娇, 鄢捷年, 邓田青, 等. 低渗透凝析气藏储层损害特征及钻井液保护技术[J]. 石油学报, 2011, 32(5): 893- 899.
|
16 |
郭继香, 张德兰, 杨军伟, 等. 致密气藏压裂液水锁抑制剂筛选及性能评价[J]. 应用化工, 2011, 40(11): 1994-1997, 2007.
DOI |
17 |
ELKEWIDY T I. Evaluation of formation damage/remediation potential of low permeability reservoirs[C]//the SPE European Formation Damage Conference & Exhibition. Noordwijk, The Netherlands: SPE, 2012: SPE-165093-MS.
|
18 |
郭建春, 陶亮, 陈迟, 等. 川南龙马溪组页岩储层水相渗吸规律[J]. 计算物理, 2021, 38(5): 565- 572.
DOI |
19 |
邸士莹, 程时清, 白文鹏, 等. 致密油藏动态裂缝扩展机理及应用[J]. 力学学报, 2021, 53(8): 2141- 2155.
|
20 |
DOI |
21 |
DOI |
22 |
赖南君, 叶仲斌, 刘向君, 等. 低渗透致密砂岩气藏水锁损害室内研究[J]. 天然气工业, 2005, 25(4): 125- 127.
DOI |
23 |
冯旭菲, 吴汉, 王尤富. 低渗透油藏水锁损害室内实验研究[J]. 当代化工, 2019, 48(11): 2626- 2629.
DOI |
24 |
苏玉亮, 韩秀虹, 王文东, 等. 致密油体积压裂耦合渗吸产能预测模型[J]. 深圳大学学报(理工版), 2018, 35(4): 345- 352.
|
25 |
蒋官澄, 王晓军, 关键, 等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69- 73.
DOI |
26 |
孙玉学, 谢建波, 才庆. 应用量子神经网络预测低渗储层水锁损害[J]. 特种油气藏, 2012, 19(6): 53- 55.
|
27 |
朱洪林, 刘向君, 姚光华, 等. 用数字岩心确定低渗透砂岩水锁临界值[J]. 天然气工业, 2016, 36(4): 41- 47.
|
28 |
唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学(技术科学), 2018, 48(5): 537- 547.
|
29 |
贺承祖, 华明琪. 水锁机理的定量研究[J]. 钻井液与完井液, 2000, 17(3): 4- 7.
|
30 |
杨旭, 李皋, 孟英峰, 等. 低渗透气藏水锁损害定量评价模型[J]. 石油钻探技术, 2019, 47(1): 101- 106.
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
李传亮. 储层岩石的应力敏感性评价方法[J]. 大庆石油地质与开发, 2006, 25(1): 40- 42.
|
37 |
李跃刚, 王文举, 万单夫, 等. 应力敏感对致密砂岩气藏气水两相渗流特征影响研究[J]. 科学技术与工程, 2017, 17(3): 69- 73.
|
38 |
江昀, 杨贤友, 李越, 等. 大北-克深区块致密砂岩气藏水锁伤害防治[J]. 深圳大学学报(理工版), 2017, 34(6): 640- 646.
|
39 |
游利军, 石玉江, 张海涛, 等. 致密砂岩气藏水相圈闭损害自然解除行为研究[J]. 天然气地球科学, 2013, 24(6): 1214- 1219.
|
40 |
宋学锋, 魏慧蕊, 李文杰, 等. 塔里木盆地M区块致密砂岩气藏水锁损害影响因素评价[J]. 断块油气田, 2022, 29(2): 224- 228.
|
41 |
刁红霞, 王彦兴, 熊超, 等. 低渗透砂岩油藏水锁损害影响因素研究[J]. 当代化工, 2016, 45(8): 1817-1819+1823.
|
42 |
崔文富. 驱替压力梯度对水驱油田采收率影响研究[J]. 计算物理, 2024, 41(3): 325- 333.
DOI |
43 |
丛海龙, 吴子森, 李虹, 等. 致密砂岩孔隙尺度应力敏感分析[J]. 科学技术与工程, 2019, 19(15): 105- 110.
|
44 |
田虓丰, 程林松, 李春兰, 等. 致密油藏液测应力敏感性计算模型[J]. 计算物理, 2015, 32(3): 334- 342.
|
45 |
|
[1] | Zhenjie ZHANG, Jianyuan FENG, Jianchao CAI, Kangli CHEN, Qingbang MENG. Driving Force for Spontaneous Imbibition Under Different Boundary Conditions [J]. Chinese Journal of Computational Physics, 2021, 38(5): 513-520. |
[2] | Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels [J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.