Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (1): 18-27.DOI: 10.19596/j.cnki.1001-246x.8820
• Research Article • Previous Articles Next Articles
Xiuxia ZHANG(), Imin RAHMATJAN*(
)
Received:
2023-08-14
Online:
2025-01-25
Published:
2025-03-08
Contact:
Imin RAHMATJAN
Xiuxia ZHANG, Imin RAHMATJAN. Application of KDF-SPH Method in Numerical Solution of Fractional Convection-diffusion Equation[J]. Chinese Journal of Computational Physics, 2025, 42(1): 18-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8820
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.187 824 245 | 0.029 230 384 9 | 2.826 246 99×10-5 | 4.387 049 88×10-6 | |
41 | 0.188 761 281 | 0.021 279 728 1 | 5.966 435 60×10-6 | 6.713 923 22×10-7 | |
81 | 0.189 222 271 | 0.015 270 329 2 | 3.915 911 05×10-7 | 3.192 811 04×10-8 | |
161 | 0.189 461 295 | 0.010 878 059 2 | 1.004 535 21×10-6 | 5.712 619 91×10-8 |
Table 1 Error norms generated by different particles in one-dimensional constant coefficient problem
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.187 824 245 | 0.029 230 384 9 | 2.826 246 99×10-5 | 4.387 049 88×10-6 | |
41 | 0.188 761 281 | 0.021 279 728 1 | 5.966 435 60×10-6 | 6.713 923 22×10-7 | |
81 | 0.189 222 271 | 0.015 270 329 2 | 3.915 911 05×10-7 | 3.192 811 04×10-8 | |
161 | 0.189 461 295 | 0.010 878 059 2 | 1.004 535 21×10-6 | 5.712 619 91×10-8 |
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.426 023 65 | 0.065 691 974 5 | 0.012 750 278 14 | 0.082 466 900 91 | |
41 | 0.400 575 14 | 0.044 381 002 9 | 0.054 684 664 84 | 0.006 040 478 08 | |
81 | 0.386 139 20 | 0.030 455 404 6 | 0.040 594 508 69 | 0.003 174 262 73 | |
161 | 0.381 061 91 | 0.024 589 024 6 | 0.035 873 050 50 | 0.002 288 587 91 |
Table 2 Error norms generated by different particles in one-dimensional variable coefficient problem
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.426 023 65 | 0.065 691 974 5 | 0.012 750 278 14 | 0.082 466 900 91 | |
41 | 0.400 575 14 | 0.044 381 002 9 | 0.054 684 664 84 | 0.006 040 478 08 | |
81 | 0.386 139 20 | 0.030 455 404 6 | 0.040 594 508 69 | 0.003 174 262 73 | |
161 | 0.381 061 91 | 0.024 589 024 6 | 0.035 873 050 50 | 0.002 288 587 91 |
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞/10-5 | L2/10-6 | ||
21 | 0.044 363 838 | 0.006 787 726 8 | 5.171 276 14 | 7.655 307 54 | |
41 | 0.044 448 379 | 0.004 916 989 0 | 4.715 602 54 | 5.111 371 43 | |
81 | 0.044 448 970 | 0.003 519 807 4 | 4.719 726 09 | 3.694 452 17 | |
161 | 0.044 451 803 | 0.002 504 346 9 | 4.781 209 45 | 2.675 855 92 |
Table 3 Error norms generated by different particles in one-dimensional Burgers problem
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞/10-5 | L2/10-6 | ||
21 | 0.044 363 838 | 0.006 787 726 8 | 5.171 276 14 | 7.655 307 54 | |
41 | 0.044 448 379 | 0.004 916 989 0 | 4.715 602 54 | 5.111 371 43 | |
81 | 0.044 448 970 | 0.003 519 807 4 | 4.719 726 09 | 3.694 452 17 | |
161 | 0.044 451 803 | 0.002 504 346 9 | 4.781 209 45 | 2.675 855 92 |
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 1.297 222 0 | 0.202 003 5 | 0.035 649 2 | 0.004 942 0 | |
41 | 1.308 954 7 | 0.147 337 7 | 0.035 853 0 | 0.003 586 2 | |
81 | 1.313 436 6 | 0.105 832 2 | 0.035 969 3 | 0.002 568 3 | |
161 | 1.315 674 7 | 0.075 428 3 | 0.035 981 6 | 0.001 827 5 |
Table 4 Error norms generated by different particles in one-dimensional convection boundary problem
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 1.297 222 0 | 0.202 003 5 | 0.035 649 2 | 0.004 942 0 | |
41 | 1.308 954 7 | 0.147 337 7 | 0.035 853 0 | 0.003 586 2 | |
81 | 1.313 436 6 | 0.105 832 2 | 0.035 969 3 | 0.002 568 3 | |
161 | 1.315 674 7 | 0.075 428 3 | 0.035 981 6 | 0.001 827 5 |
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.260 882 9 | 0.053 923 2 | 0.020 470 2 | 0.004 419 4 | |
41 | 0.484 058 2 | 0.050 855 9 | 0.024 548 5 | 0.002 318 8 | |
81 | 0.935 894 8 | 0.049 633 1 | 0.045 805 4 | 0.001 991 6 | |
161 | 1.841 253 9 | 0.049 071 9 | 0.091 089 6 | 0.001 963 8 |
Table 5 Error norms generated by different particles in two-dimensional problem
粒子数 | SPH方法 | KDF-SPH方法 | |||
L∞ | L2 | L∞ | L2 | ||
21 | 0.260 882 9 | 0.053 923 2 | 0.020 470 2 | 0.004 419 4 | |
41 | 0.484 058 2 | 0.050 855 9 | 0.024 548 5 | 0.002 318 8 | |
81 | 0.935 894 8 | 0.049 633 1 | 0.045 805 4 | 0.001 991 6 | |
161 | 1.841 253 9 | 0.049 071 9 | 0.091 089 6 | 0.001 963 8 |
1 |
吴强, 黄建华. 分数阶微积分[M]. 北京: 清华大学出版社, 2016.
|
2 |
|
3 |
朱晓钢, 聂玉峰, 王俊刚, 等. 分数阶对流扩散方程的特征有限元方法[J]. 计算物理, 2017, 34 (4): 417- 424.
DOI |
4 |
DOI |
5 |
DOI |
6 |
DOI |
7 |
|
8 |
DOI |
9 |
DOI |
10 |
王绍婷. Caputo分数阶导数的高阶逼近方法及其应用[D]. 武汉: 华中科技大学, 2015.
|
11 |
DOI |
12 |
徐丞君, 徐胜利. SPH二阶粒子近似光滑函数的充分条件及数值验证[J]. 计算物理, 2019, 36 (1): 25- 38.
DOI |
13 |
DOI |
14 |
|
15 |
DOI |
16 |
DOI |
17 |
彭雪莹. 改进的KGF-SPH方法及其在对流问题中的应用研究[D]. 北京: 北京理工大学, 2023.
|
18 |
王星驰. 基于修正SPH方法时/空分数阶对流扩散方程的数值研究[D]. 扬州: 扬州大学, 2021.
|
19 |
裴静娴, 热合买提江·依明. 基于有限差分法的SPH边界处理算法及其应用[J]. 计算物理, 2023, 40 (3): 343- 352.
DOI |
20 |
|
21 |
DOI |
22 |
DOI |
23 |
DOI |
24 |
|
[1] | ZHANG Rui, CHEN Lei, ZENG Wen, JU Yingxin, LI Nanyu, SONG Peng. Simulation of Effect of Discharge Voltage and Dielectric Material on Ionisation Characteristics of Methane Dielectric Blocking Discharge [J]. Chinese Journal of Computational Physics, 2025, 42(1): 47-56. |
[2] | XU Pucheng, GUAN Jianfei. Analysis of Refractive Index Sensing Performance of MDM Waveguide Coupled with an M-shaped Resonant Cavity [J]. Chinese Journal of Computational Physics, 2025, 42(1): 57-64. |
[3] | Liuxing HUANG, Jun ZHUO, Yaqi LI, Shengli NIU, Yanjun FU, Xiazhi LI, Jinhui ZHU, Jinlin NIU. Progress in Numerical Simulation of Radioactive Fallout with Complex Conditions [J]. Chinese Journal of Computational Physics, 2024, 41(6): 797-803. |
[4] | Chao YANG, Haiyan XIE, Xinyang ZHAI, Hailiang QIAO, Zaigao CHEN, Yinjun GAO. Study on HEMP Environment of Ground Based on G-TF/SF Technique [J]. Chinese Journal of Computational Physics, 2024, 41(5): 589-595. |
[5] | Xingkang LIU, Xingding CHEN, Yunlong YU. Deflated Preconditioned Conjugate Gradient Solvers for Linear Elastic Crack Problems [J]. Chinese Journal of Computational Physics, 2024, 41(5): 619-629. |
[6] | Yali WANG, Bo ZHENG, Yueqiang SHANG. Two-level Grad-div Stabilized Finite Element Methods for Steady Incompressible Navier-Stokes Equations [J]. Chinese Journal of Computational Physics, 2024, 41(4): 418-425. |
[7] | Yelin LIU, Peng HAO, Mingming DING. Finite Element Analysis of Inertial Migration of Double Vesicles in Microtubular Flow [J]. Chinese Journal of Computational Physics, 2024, 41(4): 463-471. |
[8] | Xiong TANG, Pei ZHENG. Finite Deformation Theory of Poroviscoelasticity Based on Logarithmic Strain [J]. Chinese Journal of Computational Physics, 2024, 41(3): 287-297. |
[9] | Jiru HUAI, Peng WANG, Mengyu YANG. Simulation of Droplet Impact on Cable Surfaces with Different Contact Angles [J]. Chinese Journal of Computational Physics, 2024, 41(3): 298-307. |
[10] | Hexiao FAN, Xingding CHEN. A Class of Preconditioners for Static Elastic Crack Problems Modeled by Extended Finite Element Method [J]. Chinese Journal of Computational Physics, 2024, 41(2): 151-160. |
[11] | Shaoliang HU, Xiaowen XU, Hengbin AN, Ran XU, Ronghong FAN. JPSOL: A Parallel Numerical Algebraic Solver Driven by Application Features [J]. Chinese Journal of Computational Physics, 2024, 41(1): 110-121. |
[12] | Puyang GAO. Non-isothermal Polymer Filling Process via Phase Field Method in Three Dimensions [J]. Chinese Journal of Computational Physics, 2023, 40(6): 689-698. |
[13] | Guoliang WANG, Bo ZHENG, Yueqiang SHANG. Parallel Finite Element Algorithms Based on Two-grid Discretizations for the Steady Navier-Stokes Equations with Damping Term [J]. Chinese Journal of Computational Physics, 2023, 40(5): 535-547. |
[14] | Shaochun WANG, Shuoran FU, Lingkong GUO, Zhihao TANG, Na ZHANG, Qian SUN. Numerical Simulation of Water-flooding Reservoirs Considering Permeability Time Variation Based on Mimetic Finite Difference Method [J]. Chinese Journal of Computational Physics, 2023, 40(5): 597-605. |
[15] | Jingxian PEI, Imin RAHMATJAN. SPH Boundary Algorithm Based on Finite Difference Method and Its Application [J]. Chinese Journal of Computational Physics, 2023, 40(3): 343-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.