[1] BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Comput Methods Appl Mech Eng, 1992, 99:235-394. [2] HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for flow speeds[J]. J Comput Phys, 1974, 14:227-253. [3] BAINES M J. Moving finite elements[M]. Britain:Oxford Science Publications, 1994. [4] DUKOWICZ J K. A simplified adaptive mesh technique derived from the moving finite element method[J]. J Comput Phys, 1984, 56:324-342. [5] LI R, TANG T, ZHANG P W. A moving mesh finite element algorithm for singular problems in two and three space dimensions[J]. J Comput Phys, 2002, 177:365-393. [6] AZARENOK B N. Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics[J]. SIAM J Numer Anal, 2002, 40:651-682. [7] KNUPP P, MARGOLIN L G, SHASHKOV M. Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods[J]. J Comput Phys, 2002, 176:93-128. [8] BENSON D J. Momentum advection on a staggered mesh[J]. J Comput Phys, 1992, 100:143-162. [9] DUKOWICZ J K, KODIS J W. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations[J]. SIAM J Stat Comput, 1987, 8:305-321. [10] BRACKBILLJ U. An adaptive grid with directional control[J]. J Comput Phys,1993,108:38-50. [11] BRACKBILLJ U, SALTZMAN J S. Adaptive zoning for singular problems in two dimensions[J]. J Comput Phys,1982,46:342-368. [12] CHARAKHCH'YAN A A, IVANENKO S. A variational form of the Winslow grid generator[J]. J Comput Phys, 1997, 136:385-398. [13] IVANENKO S. Generation of non-degenerate meshes[J]. USSR Comput Maths Math Phys, 1988, 28:141-146. [14] KNUPP P, STEINBERG S. Fundamentals of grid generation[M]. CRC Press, 1993. [15] STEINBERG S, ROACHE P J. Variational grid generation[J]. Num Meth for P DEs, 1986, 2:71-96. [16] WINSLOW A M. Numerical solution of the quasi-linear Poisson equation on a nonuniform triangle mesh[J]. J Comput Phys, 1966, 1:149-172. [17] DE BOOR C. Good Approximation by splines with variable knots Ⅱ[M]. Springer Lecture Notes Series, Springer-Verlag, 1973. [18] BUDD C J, HUANG W, RUSSELL R D. Moving mesh methods for problems with blow-up[J]. SIAM J Sci Comput, 1996, 17:305. [19] BUDD C J, CHEN S, RUSSELL R D. New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations[J]. J Comput Phys, 1999, 152:756. [20] REN W, WANG X P. An iterative grid redistribution method for singular problems in multiple dimensions[J]. J Comput Phys, 2000, 159:246-273. [21] LI R, TANG T, ZHANG P W. Moving mesh methods in multiple dimensions based on harmonic maps[J]. J Comput Phys, 2001, 170:562. [22] HUANG W. Practical aspects of formulation and solution of moving mesh partial differential equations[J]. J Comput Phys, 2001, 171:753-775. [23] LOUBERE R, MAIRE P H, SHASHKOV M, et al. ReALE:A reconnection-based arbitrary-Lagrangian-Eulerian method[J]. J Comput Phys, 2010, 229:4724-4761. [24] ANDREWS M J. Accurate computation of convective transport in transient two-phase flow[J]. Int J Numer Meth Fluid, 1995, 21:205-222. [25] GLIMM J, GROVE J W, LI X L, et al. Three dimensional front tracking[J]. SIAM J Sci Comp, 1998, 19:703-727. [26] GLIMM J, GROVE J, LI X L, et al. A critical analysis of Rayleigh-Taylor growth rates[J]. J Comput Phys, 2001, 169:652-677. |