[1] TURANYI T. Applications of sensitivity analysis to combustion chemistry[J]. Reliability Engineering & System Safety, 1997, 57(1):41-48. [2] DUNKER A M. The decoupled direct method for calculating sensitivity coefficients in chemical kinetics[J]. The Journal of Chemical Physics, 1984, 81(5):2385-2393. [3] GRIFFITHS J F. Reduced kinetic models and their application to practical combustion systems[J]. Progress in Energy and Combustion Science, 1995, 21(1):25-107. [4] TURANYI T, BERCES T, VAJDA S. Reaction rate analysis of complex kinetic systems[J]. International Journal of Chemical Kinetics, 1989, 21(2):83-99. [5] ZHANG G, ZHAO P, ZHU M, et al. Pseudo-homogeneous modeling of un-stabilized filtration combustion[J]. Chinese Journal of Computational Physics, 2007, 24(5):605-611. [6] CHEN J Y. Development of reduced mechanisms for numerical modelling of turbulent combustion[C]. Workshop on Numerical Aspects of Reduction in Chemical Kinetics, CERMICS-ENPC Cite Descartes Champus sur Marne, France, 1997. [7] LIU J, CHENG X, WANG Q. The application of computational singular perturbation in reduced combustion reaction systems[J]. Chinese Journal of Computational Physics, 2005, 22(2):143-148. [8] MASSIAS A, DIAMANTIS D, MASTORAKOS E, et al. An algorithm for the construction of global reduced mechanisms with CSP data[J]. Combustion and Flame, 1999, 117(4):685-708. [9] DUCHÊNE P, ROUCHON P. Kinetic scheme reduction via geometric singular perturbation techniques[J]. Chemical Engineering Science, 1996, 51(20):4661-4672. [10] 杨顺华, 肖保国, 钱炜祺. 乙烯燃烧简化化学动力学模型及其验证[J]. 实验流体力学, 2009, 23(2):1-4, 19. [11] WANG H, CHEN Y. PDF modeling of local extinction and re-ignition within turbulent non-premixed flame[J]. Chinese Journal of Computational Physics, 2004, 21(6):471-476. [12] YUNGSTER S, RABINOWITZ M J. Computation of shock-induced combustion using a detailed methane-air mechanism[J]. Journal of Propulsion and Power, 1994, 10(5):609-617. [13] SOETRISNO M, IMLAY S, ROBERTS D. Numerical simulations of the transdetonative ram accelerator combusting flow field on a parallel computer[C]//28th Joint Propulsion Conference and Exhibit, 1992:3249. [14] CLUTTER K, KRISHNAMURTY V, SHYY W, et al. Combustion and turbulence effects in hypersonic projectile flows[C]//35th Aerospace Sciences Meeting and Exhibit, 1997:897. [15] JIANG Y, SHU C W, ZHANG M. An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws[J]. SIAM Journal on Scientific Computing, 2013, 35(2):A1137-A1160. [16] JIANG Y, SHU C W, ZHANG M. Free-stream preserving finite difference schemes on curvilinear meshes[J]. Methods and Applications of Analysis, 2014, 21(1):001-030. [17] KEE R J, RUPLEY F M, MILLER J A. Chemkin-II:A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Sandia National Labs, Livermore, CA (USA), 1989. [18] KUO K K. Principles of combustion[M]. 2005. [19] SHUEN J S, LIOU M S, Van LEER B. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry[J]. Journal of Computational Physics, 1990, 90(2):371-395. [20] TOSHIMITSU K, MATSUO A, KAMEL M R, et al. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows[J]. Journal of Propulsion and Power, 2000, 16(1):16-21. [21] GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1):89-112. [22] SRULIJES J, SMEETS G, SEILER F. Expansion tube experiments for the investigation of ram-accelerator-related combustion and gasdynamic problems[C]//28th Joint Propulsion Conference and Exhibit, 1992:3246. [23] LESCHEVICH V V, MARTYNENKO V V, PENYAZKOV O G, et al. Auto-ignitions of a methane/air mixture at high and intermediate temperatures[J]. Shock Waves, 2016, 26(5):657-672. |