[1] YANG L, PARK C H, SON Y W, et al. Quasiparticle energies and band gaps in graphene nanoribbons[J]. Phys Rev Lett, 2007, 99(18):186801. [2] HOD O, BARONE V, SCUSERIA G E. Half-metallic graphene nanodots:A comprehensive first-principles theoretical study[J]. Phys Rev B, 2008, 77(3):035411. [3] KAN Z, NELSON C, KJATUN M. Quantum conductance of zigzag graphene oxide nanoribbons[J]. J Appl Phys, 2014, 115(15):153704. [4] ZHU Z, ZHANG Z H, WANG D, et al. Magnetic structure and magnetic transport characteristics of nanostructures based on armchair-edged graphene nanoribbons[J]. J Mater Chem C, 2015, 3(37):9657-9663. [5] YU Z L, WANG D, ZHU Z, et al. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms[J]. Phys Chem Chem Phys, 2015, 17(37):24020-24028. [6] TANG G P, ZHANG Z H, DENG X Q, et al. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects[J]. Phys Chem Chem Phys, 2015, 17(1):638-643. [7] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质[J]. 物理学报, 2016, 65(1):016101. [8] FARZANEH S. Energy gap tuning of graphene layers with single molecular F2 adsorption[J]. J Phys Chem C, 2015, 119(22):12681-12689. [9] WANG Q H, SHIH C J, PAULUS G L C, et al. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization[J]. J Am Chem Soc, 2013, 135(50):18866-18875. [10] 胡小会,许俊敏,孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究[J]. 物理学报,2012, 61(4):047106. [11] 许俊敏,胡小会,孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电磁学特性研究[J]. 物理学报,2012, 61(2):027104. [12] HE J, CHEN K Q, FAN Z Q, et al. Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons[J]. Appl Phys Lett, 2010, 97(19):193305. [13] SEOL G, GUO J. Bandgap opening in boron nitride confined armchair graphene nanoribbon[J]. Appl Phys Lett, 2011, 98(14):143107. [14] ZHAO S Q, LV Y, LV W G, et al. Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons[J]. Chin Phys B, 2014, 23(6):067305. [15] LIU J, ZHANG Z H, DENG X Q, et al. Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping[J]. Organic Electronics, 2015, 18:135-142. [16] 林琦,陈余行,吴建宝,等. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响[J]. 物理学报,2011, 60(9):097103. [17] XIAO J, YANG Z X, XIE W T, et al. Electronic properties of graphene nanoribbon doped by boron/nitrogen pair:A first-principles study[J]. Chinese Phys B, 2012, 21(2):027102. [18] LIU Z M, ZHU Y, YANG Z Q. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons[J]. J Chem Phys, 2011, 134(7):074708. [19] 王鼎, 张振华, 邓小清, 等. BN链掺杂的石墨烯纳米带的电学及磁学特性[J]. 物理学报, 2013, 62(20):207101. [20] XU B, LU Y H, FENG Y P, et al. Density functional theory study of BN-doped graphene superlattice:Role of geometrical shape and size[J]. J Appl Phys, 2010, 108(7):073711. [21] MANNA A K, PATI S K. Tunable electronic and magnetic properties in BxNyCz nanohybrids:effect of domain segregation[J]. J Phys Chem C, 2011, 115(21):10842-10850. [22] CI L J, SONG L, JIN C H, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nature Materials, 2010, 9(5):430-435. [23] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质[J]. 物理学报, 2017, 66(13):138501. [24] WANG J, FAN C, DENG J, et al. First-principles calculation of Cu-Cr Co-doped AlN diluted magnetic semiconductors[J]. Chinese Journal of Computational Physics, 2016, 33(1):99-107. [25] YAN Y C, WANG Y L, MA H F. First-principles study of electronic and optical properties of BxGa1-x As alloy[J]. Chinese Journal of Computational Physics, 2016, 33(2):221-228. [26] MA J L, FU Z F, LI Y et al. Electron mobility in silicon under uniaxial[110] stress[J]. Chinese Journal of Computational Physics, 2017, 34(4):483-488. [27] KAN M, ZHOU J, SUN Q, et al. Tuning magnetic properties of graphene nanoribbons with topological line defects:From antiferromagnetic to ferromagnetic[J]. Phys Rev B, 2012, 85(15):155450. |