[1] TANG L, LU J, WU X, et al. Impact of node dynamics parameters on topology identification of complex dynamical networks[J]. Nonlinear Dynamics, 2013, 73(1/2):1081-1097. [2] LU L, CHEN D, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650:1-63. [3] 孔江涛, 黄健, 龚建兴, 等. 基于复杂网络动力学模型的无向加权网络节点重要性评估[J]. 物理学报, 2018, 67(9):255-271. [4] STROGATZ S H. Exploring complex networks[J]. Nature, 2001, 410(6825):268-276. [5] 方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学:网络科学(上)[J]. 物理学进展, 2007, 27(3):239-343. [6] 方锦清. 非线性网络的动力学复杂性研究的若干进展[J]. 自然科学进展, 2007, 17(7):841-857. [7] WANG Y, ZOU Y L, HUANG L, et al. Key nodes identification of power grid considering local and global characteristics[J].Chinese Journal of Computational Physics, 2018, 35(1):119-126. [8] PAGANI G A, AIELLO M. From the grid to the smart grid, topologically[J]. Phys A, 2016, 449:160-175. [9] 王光增, 曹一家, 包哲静, 等. 一种新型电力网络局域世界演化模型[J]. 物理学报, 2009, 58(6):3597-3602. [10] MOTTER A E, MYERS S A, ANGHEL M, et al. Spontaneous synchrony in power-grid networks[J]. Nature Physics, 2013, 9(3):191-197. [11] 卢鹏丽, 董璊, 曹乐. 聚类系数指标对复杂网络鲁棒性的影响分析[J]. 兰州理工大学学报, 2019, 45(03):101-107. [12] YANG Y, TAKASHI N, ADILSON E M. Small vulnerable sets determine large network cascades in power grids[J]. Science, 2017, 358(6365). [13] ZHANG X, ZHAN C Z, TSE C K. Modeling the dynamics of cascading failures in power systems[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(2):192-204. [14] LAN Q Y,ZOU Y L,FENG C. Cascading failures of power grids under three attack strategies[J]. Chinese Journal of Computational Physics, 2012, 29(06):943-948. [15] FILATRELLA G, NIELSEN A H, PEDERSEN N F. Analysis of a power grid using a Kuramoto-like model[J]. European Physical Journal B, 2008, 61(4):485-491. [16] MORENO Y, PACHECO A F. Synchronization of Kuramoto oscillators in scale-free networks[J]. EPL, 2004, 68(4):511-534. [17] ZOU Y L, WANG R R, WU L J, et al. Optimization of synchronization performance in power grids with local order parameters[J]. Chinese Journal of Computational Physics, 2019, 36(4):498-504. [18] ROHDEN M, SORGE A, TIMME M, et al. Self-organized synchronization in decentralized power grids[J]. Physical Review Letters, 2012, 109(6):064101. [19] 陈思谕, 邹艳丽, 王瑞瑞, 等. 电网输电线路耦合强度分配策略研究[J].复杂系统与复杂性科学, 2018, 15(02):45-53. [20] ROHDEN M A, SORGE A, WITTHAUT D, et al. Impact of network topology on synchrony of oscillatory power grids[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1):1-19. [21] BIALEK J. Topological generation and load distribution factor for supplement charge allocation in transmission open access[J]. IEEE Transaction on Power System, 1997, 12(3):1185-1190. [22] KISCHEN D, ALLAN R, STRBAC G. Contribution of individual generators to loads and flows[J]. IEEE Transaction on Power System,1997,12(1):52-60. [23] 曹昉, 舒雅丽, 李成仁. 基于分类潮流追踪法的特高压输电网损分摊[J]. 中国电力, 2018, 51(7):54-60. [24] 任建文, 李莎, 严敏敏. 基于潮流跟踪算法的线路过负荷紧急控制策略[J]. 电网技术, 2013, 37(2):392-397. [25] 杨克难, 吴浩, 郑宁浪. 一种基于潮流追踪的电力系统无功补偿方法[J]. 电力系统自动化, 2012, 36(8):45-51. [26] LUCIA V G, ARTURO B, LUIGI F,et al. Analysis of dynamical robustness to noise in power grids[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(3):413- 421. [27] MANIK D, ROHDEN M. Network susceptibilitis:Theory and applications[J]. Physical Review E, 2017, 95:012319. [28] 谢开贵, 李春燕, 赵渊, 等. 电力系统功率分配的解析模型和算法[J]. 中国电机工程学报, 2005, 25(22):30-34. |