计算物理 ›› 2001, Vol. 18 ›› Issue (2): 119-124.

• 论文 • 上一篇    下一篇

谱元方法求解正方形封闭空腔内的自然对流换热

秦国良, 徐忠   

  1. 西安交通大学能源与动力工程学院, 陕西 西安 710049
  • 收稿日期:1999-06-26 修回日期:2000-01-31 出版日期:2001-03-25 发布日期:2001-03-25
  • 作者简介:秦国良(1964-),男,安徽太和,博士,副教授,从事流体机械内部流动及流动数值模拟方面的研究.
  • 基金资助:
    国家自然科学基金资助项目(59776006)

COMPUTATION OF NATURAL CONVECTION IN TWO DIMENSIONAL CAVITY USING SPECTRAL ELEMENT METHOD

QIN Guo-liang, XU Zhong   

  1. School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
  • Received:1999-06-26 Revised:2000-01-31 Online:2001-03-25 Published:2001-03-25

摘要: 提出谱元方法计算正方形截面封闭空腔内的自然对流问题,具体求解了原始变量速度和压力的不可压Navier-Stokes方程和温度方程.所有的求解变量均采用Chebyshev谱逼近.Navier-Stokes方程和温度方程的时间离散采用时间分裂法,非线性项用4阶Runge-Kutta法,扩散项用Crank-Nicolson半隐方法,获得了与文献发表的基准解较一致的计算结果.

关键词: 谱元方法, 自然对流, Navier Stokes方程, 非定常流动

Abstract: A spectral element method for the computation of nature convection in closed square cavity is presented.The incompressible Navier Stokes equations expressed in terms of the primitive variables velocity and pressure,and an additional equation for the temperature,are considered.All the variables are expanded in Chebyshev polynomials.A time splitting method is used with a fourth order Runge Kutta for the nonlinear terms and a semi implicit Crank Nicolson method for the viscous terms.The obtained results show to be in excellent agreement with the accepted benchmark solutions.

Key words: spectral element method, natural convection, Navier Stokes, unsteady flow

中图分类号: